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Preface to the  
second edition

The first paper demonstrating the scope for improving the design of animal experi-
ments was published more than 20 years ago and the first edition of this book was 
published largely in response to that finding. Animal welfare organisations such as 
the Fund for the Replacement of Animals in Medical Experiments (FRAME) and the 
Universities Federation for Animal Welfare (UFAW) as well as the UK Home Office 
have recognised that poor design and inadequate statistical analysis are both an animal 
welfare and a scientific issue. The funding organisations, which also would have been 
in a position to demand progress, have been slow to realise the need for improvement. 
They have largely relied on peer review of submitted papers. But this only works if the 
referees have adequate training, which clearly has not always been the case. Indeed, 
the publication of novel meta-analysis and systematic reviews of animal experiments 
in the early 21st century has highlighted many additional defects in animal research. 
These included inefficient experimental design, incorrect statistical analysis and poor 
reporting of important information on the experiment, sometimes all at once.

Science depends on the assumption that experiments give results which can be 
repeated. The discovery in recent years that a large proportion of papers using lab-
oratory animals have produced false-positive results has therefore been a shock. At 
the time of writing, it has been estimated that the cost of these failures amounts 
to about US$28 billion per year in the USA alone. This is clearly ethically and 
economically unacceptable. The funding bodies, as well as newer organisations 
(e.g. NC3Rs), have however now taken note and it seems likely that there will be 
much more emphasis in the next few years on ensuring that all scientists using labo-
ratory animals are adequately trained in experimental design and statistics. 

In writing this edition, we have kept an eye on, and indeed have sometimes par-
ticipated in, the changing landscape in education and training worldwide, and in 
Europe specifically. We have expanded some aspects to cover important concepts 
and learning outcomes in more detail and reorganised the structure of the book with 
an additional six short sections. We have also done all the statistical analyses pre-
sented in the book using R-Commander (Rcmdr), a free statistical menu-driven front 
end to the ‘R’ statistical programming language. 

In short, the evidence suggests that there is still a long way to go but that there 
is hope on the horizon. We hope that this 2nd edition of the book will continue to 
contribute to this journey.

Michael F. W. Festing, Philip Overend,  
Mario Cortina Borja and Manuel Berdoy

March 2016
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Preface to the  
first edition

It is universally accepted that persons who aspire to use animals for experimental 
purposes should receive proper training. At the heart of this training is the application 
of Russell and Burch’s 3Rs, i.e. Replacement, Reduction and Refinement (Russell 
& Burch, 1959). Of these, it is probable that least emphasis is placed on, and least 
success has been obtained in, reducing the number of animals that are currently used 
in animal experiments.

A major factor in bringing about a reduction in animal use is the correct appli-
cation of experimental design and statistical analysis, both of which are, arguably, 
poorly taught or understood by undergraduates and postgraduates in the biomedical 
sciences. This deficiency is a major concern to a number of bodies, not least to the 
UK Home Office, which mandates courses (Modules 1–5) for the training of persons 
in preparation for applying for a licence to use animals; to the Institute of Biology 
(IOB) which is one of the two accrediting bodies for these courses; and to the Fund 
for the Replacement of Animals in Medical Experiments (FRAME) which has set up 
a ‘Reduction Committee’ to recommend a resolution to the problem. Therefore, in 
order to redress this imbalance, the IOB decided to commission a book to provide, 
in a clear, concise and simple way, an understanding of the benefits to be derived by 
investigators in the proper design of their studies. It is expected that, in many cases, 
this will lead to a reduction in the number of animals needed, but in all cases it would 
lead to the optimum use of animals that would provide valid results.

It is not intended that this book should emulate the many textbooks that are avail-
able which give a detailed description of experimental design and statistical analysis. 
Rather, its purpose is to act as a teaching aid to impart an understanding of what 
types of experimental design and statistics should be considered when developing 
an experimental study protocol. References to textbooks and statistical packages are 
then given to enable these to be carried out. Undoubtedly, the best course of action 
when contemplating designing a study is to seek out and employ a statistician knowl-
edgeable in the field of interest. He or she will want to know many of the details 
discussed in this book. It is hoped that this book will be of interest in all fields 
of scientific research and that it will achieve its aim of helping to improve studies 
such that animal use is reduced, whilst still ensuring that the maximum benefits are 
derived from the study.

Bryan Waynforth
Chairman, Editorial Group
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1
Introduction and basic 
principles

Progress in medical and biological research is heavily dependent on the use of 
laboratory animals, although replacements for the use of animals are continually 
being sought. For ethical, legal and indeed economic reasons animal experiments 
should be designed to use the minimum number of animals needed to achieve the 
objectives of the study. It is a fundamental principle in science that experiments 
should give results which are reproducible; but scientific progress can, and is, 
impeded by two sorts of failure: false-negative and false-positive results. In the con-
text of experimental design and statistics, false-negative results arise from experiments 
where inter-individual variation is poorly controlled or the number of subjects is too 
few to be able to detect an effect which would be of clinical or scientific impor-
tance. This could lead to the loss of a useful treatment. Conversely, false-positive 
effects occur when a response is claimed but it is actually the result of a bias or other 
error in the conduct of the experiment and not due to the treatment. This can be 
extremely damaging as scientists attempt to repeat the work, or take the results at their 
face value, and continue with further futile research. It has been estimated that the 
cost of non-reproducible studies in preclinical research is a staggering US$28 billion 
per annum in the USA alone (Freedman, Cockburn & Simcoe, 2015).

Purpose of this book

This book aims to cover the broad principles of experimental design for scientists 
using laboratory animals, in a non-mathematical manner. ‘Experimental design’ is 
considered here in a wide context, including the choice of animals and the control of 
biological variation, topics not normally covered in a statistics textbook. For those 
who already have some knowledge of statistics and experimental design it should 
help them to design better, more efficient, experiments which can reduce the number 
of animals needed without reducing scientific output. For others, it should provide 
background information, which will help them to consult statistical textbooks and 
professional statisticians/biometricians more effectively.

By striking this balance we also hope that the book can be helpful as a core text 
in the formal training of researchers under the new education and training landscape 
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2  The design of animal experiments

Table 1.1 Learning Outcomes for EU Modules 10 and 11.

Learning outcomes for EU Module 10 and part (ii) of Module 11 from the working 
document (European Commission, 2014) on the development of a common 
education and training framework to fulfil the requirements under the Directive 
2010/63/EU on the protection of animals used for scientific purposes.

The main sections of the book addressing the learning outcomes are listed within 
square brackets.

Module 10: Design of procedures and projects (level 1)

This module is a pre-requisite for people who will be designing projects 
(Function B) but it is also beneficial for scientists who have some involvement 
in designing the procedures that they carry out (Function A). The module 
comprises information about experimental design concepts, possible causes 
and elimination of bias, statistical analysis and information about where 
expertise can be found to assist with the procedure, design, planning and the 
interpretation of results.

Learning outcomes: trainees should be able to:

10.1.  Describe the concepts of fidelity and discrimination (e.g. as discussed by 
Russell and Burch and others) [see Chapter 1].

10.2.  Explain the concept of variability, its causes and methods of reducing it 
(uses and limitations of isogenic strains, outbred stocks, genetically modified 
strains, sourcing, stress and the value of habituation, clinical or subclinical 
infections, and basic biology) [see Chapter 2].

10.3.  Describe possible causes of bias and ways of alleviating it (e.g. formal 
randomisation, blind trials and possible actions when randomisation and 
blinding are not possible) [see Chapter 3].

10.4.  Identify the experimental unit and recognise issues of non-independence 
(pseudo-replication) [see Chapters 1, 3, 4 and 12].

10.5.  Describe the variables affecting significance, including the meaning of 
statistical power and P-values [see Chapter 11].

10.6.  Identify formal ways of determining sample size (power analysis or the 
resource equation method) [see Chapter 11].

10.7.  List the different types of formal experimental designs (e.g. completely 
randomised, randomised block, repeated measures [within subject], Latin 
square and factorial experimental designs) [see Chapters 4–8].

10.8.  Explain how to access expert help in the design of an experiment and the 
interpretation of experimental results [this is a local issue and beyond the 
remit of this book, although see Chapter 12].

Module 11: Design of procedures and projects (level 2)

[Function Specific for Function B] (ii) Good scientific practice

11.3.  Describe the principles of a good scientific strategy that are necessary to 
achieve robust results, including the need for definition of clear and
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Introduction and basic principles  3

 unambiguous hypotheses, good experimental design, experimental 
measures and analysis of results. Provide examples of the consequences 
of failing to implement sound scientific strategy [see Chapters 1 and 12].

11.4.  Demonstrate an understanding of the need to take expert advice and use 
appropriate statistical methods, recognise causes of biological variability, 
and ensure consistency between experiments [this is the general goal of the 
book as a whole].

11.5.  Discuss the importance of being able to justify on both scientific and ethical 
grounds, the decision to use live animals, including the choice of models, 
their origins, estimated numbers and life stages. Describe the scientific, 
ethical and welfare factors influencing the choice of an appropriate animal or 
non-animal model [see Chapter 2].

11.6.  Describe situations when pilot experiments may be necessary [see Chapters 
1, 2, 3, 11 and 12].

11.7. Explain the need to be up to date with developments in laboratory animal 
science and technology so as to ensure good science and animal welfare 
[see Chapter 2].

11.8.  Explain the importance of rigorous scientific technique and the requirements of 
assured quality standards such as good laboratory practice (GLP) [see Chapter 3].

11.9.  Explain the importance of dissemination of the study results irrespective of 
the outcome and describe the key issues to be reported when using live 

animals in research, e.g. ARRIVE guidelines [see Chapters 12 and 13].

worldwide, and in Europe specifically. For example, the book targets, and more than 
covers, the specific learning outcomes which form part of the training on the design 
of procedures and projects to fulfil the requirements under Article 23 of Directive 
2010/63/EU on the protection of animals used for scientific purposes (European 
Commission, 2014). The list of learning outcomes and a description of how they 
map to the contents of this book, are listed in Table 1.1. Relevant material for the 
book can also be found on the book’s website (https://uk.sagepub.com/en-gb/eur/
Design_Animal_Experiments_Handbook)

Experimental design is an interdisciplinary subject involving both biology and 
statistics. All too often scientists using animals in research have too little training in 
statistics, or any training that they are given comes too early in their career so that 
they have forgotten most of it by the time they need it. Unfortunately courses in sta-
tistics often emphasise methods of statistical analysis of data, rather than the design 
of the experiments needed to collect the data. Statisticians often have a mathemati-
cal background and may not understand the biology of laboratory animals, making 
communication between the two disciplines difficult. All too often the result is that 
the scientists who have tried to consult a statistician find it unrewarding so they 
revert to repeating the type of experiments taught to them by their graduate super-
visor, or which they see in the literature. They are often concerned that if they 
submit papers with unusual experimental designs (say with fewer than six rats per 
treatment group) these will be rejected by the referees, who themselves often have 
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4  The design of animal experiments

little training in statistics. Thus, a vicious circle develops which prevents progress 
and leads to a waste of animals, money, time and effort. We hope this book will help 
scientists avoid this.

The need to improve the design and 
statistical analysis of animal experiments

The principles of good experimental design are relatively simple, but failure to adhere 
to them is common, and can have serious consequences. Early surveys of published 
papers showed that many animal experiments were poorly designed and inadequately 
analysed (Festing, 1994a), and with little use of randomised block and factorial designs 
(Festing, 1992), even though these provide the most powerful and economical ways of 
designing experiments. Too many experiments give false-positive results which cannot 
be reproduced by subsequent experiments. They may also produce many false-negative 
results, but attempts to repeat these experiments are rare.

The results of a survey of 271 animal experiments performed between January 
1999 and March 2005 are shown in Table 1.2 (Kilkenny et al., 2009). The survey was 
restricted to original research papers involving mice, rats or non-human primates 
reported from academic institutions in the UK or the USA. There is no comparable 
information on non-academic institutions.

The survey found that 13% did not correctly identify the experimental unit. This 
is the subject of the experiment. By definition any two experimental units must be 
capable of receiving different treatments. Often the experimental unit is a single 
animal; but if there are two animals in a cage and the treatment is given in the diet 
or water then the animals cannot receive different treatments. In this latter case 
the cage is the experimental unit and the statistical analysis should be based on 

Table 1.2 Some results of a survey of a random sample of 271 published papers 
involving laboratory animals.

Of the papers studied:

 • 87% did not report random allocation of subjects to treatments
 • 86% did not report ‘blinding’ where it seemed to be appropriate
 • 100% failed to justify the sample sizes used
 • 5% did not clearly state the purpose of the study 
 • 6% did not indicate how many separate experiments were done
 • 13% did not correctly identify the experimental unit 
 • 26% failed to state the sex of the animals
 • 24% reported neither age nor weight of animals
 • 4% did not mention the number of animals used
 • 35% reported numbers used but these differed in the materials and methods 

and the results sections

See Kilkenny et al. (2009).
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Introduction and basic principles  5

the mean of whatever is measured in the two animals. If it is mistakenly assumed 
that the animal is the experimental unit, then a false-positive result may occur due to 
‘pseudo-replication’, or overestimation of ‘n’, the number of subjects in the experi-
ment. An experiment in which all the controls were put into one cage and the treated 
animals into another cage would be invalid because there would be an n of only 
two. A similar situation would arise if controls were placed in, say, cages 1–10 
and treated animals in cages 11–20. In such a case, cages 1 and 2 could not receive 
different treatments, so they would not be the experimental units. The experiment 
would again have an n of two. The problem with keeping each treatment in a num-
bered group is that the group would probably be housed, treated and measured in 
numerical order and there may be environmental and time effects that would change 
over time and space. This could lead to bias and false-positive results. Treatments 
need to be assigned to experimental units at random in such a way as to ensure that 
they are intermingled throughout an experiment. Suitable methods are described in 
Chapter 3.

The survey found that 87% of papers failed to report randomisation of treatments 
to the experimental units (the subjects of the experiments being often, but not always, 
animals), and 86% failed to report ‘blinding’ of the investigator when measuring 
the outcomes. For reasons given above, randomisation and blinding are techniques 
which are fundamental to good experimental design. Failure to use them can lead to 
bias and false-positive results.

None of the studies justified the sample sizes which were used. Use of too few 
subjects risks a false-negative outcome, but if too many animals are used there is 
a waste of animals and other scientific resources. Failure to report relevant varia-
bles such as the age, weight and sex of the animals or husbandry details makes it 
difficult for others to repeat the work. An attempt to reproduce the results of 53 land-
mark papers in cancer research was successful in only six (11%) cases. The authors 
(Begley & Ellis, 2012) concluded that ‘even knowing the limitations of preclinical 
research, this was a shocking result’.

Systematic reviews and meta-analysis have been used for many years in clinical 
trials, but only in the last 10–15 years have the techniques been used for preclinical 
animal studies. Their use in animal research is starting to reveal many defects in 
published papers. An early example was a meta-analysis of 44 papers studying fluid 
resuscitation in animals following removal of a substantial fraction of their blood 
(Perel et al., 2007). Only two of these papers described how the animals had been 
allocated (i.e. with no mention of randomisation), and none had sufficient power to 
reliably detect a halving of the risk of death, a response which would probably be of 
clinical importance. There was substantial scope for bias and there was heterogene-
ity of the results due to the method of bleeding. The authors queried whether these 
animal experiments made any contribution to human medicine.

Another systematic review of six interventions where the outcome was well estab-
lished in humans was used to investigate whether the animal studies predicted the 
human outcome (Perel et al., 2007). There was agreement in only three cases. Some 
lack of agreement was probably due to publication bias as it is often difficult to get 
papers with negative results accepted for publication. In other cases Perel et al. (2007) 
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6  The design of animal experiments

claimed that the papers were of such poor quality that it was unclear whether the lack 
of agreement with the human results was because the model was inappropriate or 
because of the poor quality of the research.

Poor design, rather than unsuitable animal models, has been shown to be the 
expensive culprit in some drug screening studies: for example, the standard model 
for screening drugs for the treatment of amyotrophic lateral sclerosis (ALS) or motor 
neuron disease is a strain of genetically modified (GM) mice carrying 23 copies of 
the human SOD1G93A gene. More than 50 papers have described therapeutic agents 
which extend lifespans in these mice, but only one (riluzole) has any effect in humans. 
However, a detailed review of this model (Scott et al., 2008) showed that there are 
a number of confounding factors such as gender, copy number, litter and censoring 
which need to be taken into account when using the model. The experimental 
protocol was redesigned using a power analysis to determine a suitable sample size 
(the ‘power’ of an experiment is the probability of detecting an effect larger than a 
predetermined size, see Chapter 11). All of the 50 drugs, which had previously been 
shown to have an effect in mice, together with another 20 drugs, were rescreened. 
This process took five years and used 18,000 mice. The investigators had expected 
to be able to reproduce the results for the 50 drugs which had previously been tested 
and had found positive effects, but found that none of them prolonged lifespans in 
these mice. They concluded that ‘the majority of published effects are most likely 
measurements of noise in the distribution of survival means as opposed to actual drug 
effects’. In short, they represented false-positives caused by poor experimental design.

The origins of the randomised 
controlled experiment

The basic principles of modern experimental design, and the statistical tools needed to 
analyse the resulting data, are not new. They were largely developed by R. A. Fisher 
and colleagues at the Rothamsted agricultural experimental station in the 1920s. The 
aim was to study crop husbandry in order to increase crop yield. The methods have 
since been adapted for use in virtually all scientific disciplines but some of the terms 
continue to reflect their agricultural origins (e.g. treatment, block and split plot).

Basic principles
If two plots in a field could be found which were in every way identical, then a ferti-
lizer could be applied to one of the plots and the other could be kept as a control. Any 
differences in yield could then be attributed to the effect of the fertiliser. However, no 
two plots are ever identical. But if enough control and fertilised plots were to be used 
then the averages of the two groups would give a good indication of any differences, 
depending on the uniformity of the field and the number of plots (sample size) in each 
group. Treatments need to be applied to the plots in such a way as to avoid any bias as a 
result of more fertile plots being assigned to one group. As it is difficult to forecast the 
fertility of individual plots, the treatments were applied to the plots at random.
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Introduction and basic principles  7

The statistical analysis of the results
The results of such an experiment needed to be statistically analysed to take account 
of the intrinsic variation among plots in order to try to ensure that the observed dif-
ferences (the effect size) were not just due to chance. If there were only two groups, 
then the data could be analysed using a ‘t-test’ developed by W.S. Gosset, a statis-
tician using the pseudonym ‘Student’ (hence ‘Student’s t-test’) who worked for the 
Guinness brewery in Dublin. This test results in a ‘t-value’ which can be interpreted 
as a signal-to-noise ratio which is converted to a ‘P-value’, namely the probability 
that a difference as great as, or greater than, that which is observed could have arisen 
simply by chance, rather than as a result of the treatment.

As early as the 1920s Fisher recognised that people need to make decisions based 
on the outcome of an experiment and suggested that if the P-value in a comparison of 
group means is less than 1/20 (0.05) it is probably safe to assume that the differences 
are real or statistically significant. He went on to develop a generalisation of the t-test, 
the analysis of variance (ANOVA), which could be used with any number of treatment 
groups, rather than just two. It gives an overall estimate of the P-value (see Chapter 4).

Factorial experiments
If a new variety of, say, wheat was developed, it might be important to know how it 
responded to a fertiliser (treatment). So instead of having, for example, 12 plots of 
the old variety (control) and 12 plots of the new variety of wheat, a better experiment 
would have four groups: six of the plots of each variety (2 groups) would have fertil-
iser and six of both varieties (2 more groups) would have no fertiliser. In this way the 
two factors, variety of wheat and the effect of the fertiliser, could be tested in a single 
experiment without increasing the total number of plots. This design would have the 
added advantage of showing:

1. The effect of the fertiliser, averaged across both varieties.
2. The difference between the varieties.
3. Whether the two varieties averaged across fertilisers would respond equally to 

the fertiliser.

This factorial design allows the testing of two or more factors without having to 
increase the overall sample size (still using 12 plots per variety). These factorial 
experiments, which are of great value in animal research, are discussed in detail in 
Chapter 6. In many cases both males and females can be included in an experiment 
without increasing the total number of animals which are used.

Randomised block designs
Sometimes the experimental material is quite heterogeneous. This reduces the ability 
of the experiment to detect any effect. In a randomised block design the material is 
split up into a number of small groups or ‘blocks’ which are matched in some way. 
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8  The design of animal experiments

Typically each block consists of a single plot for each treatment. Accurate treatment 
comparisons can then be made separately for each block and these can be averaged 
across all the blocks. These randomised block designs are usually more powerful 
(i.e. better able to detect an effect) than the completely randomised experiments 
because the partitioning of variation into blocks allows us to bring out the effect 
of the treatment that we are interested in. Blocks can even be placed in separate 
fields in order to test the generality of the response in different environments. Most 
agricultural experiments use randomised block designs. Because of these valuable 
properties, a strong case can be made for their more widespread use in experiments 
involving laboratory animals.

Comparison of clinical trials with laboratory  
animal experiments
Humans are very variable and even small effects are usually of clinical importance, 
so clinical trials need to be large (100s to 1000s of subjects), particularly if there is a 
binary (cured/not cured) rather than a measurement outcome.

Participants are gathered over a period of time and are started on the trial as they 
are recruited, so the trial has a staggered start. Allocation bias is a potential problem 
so participants are assigned to treatments strictly at random with the evaluation of 
results being double-blinded (whereby neither the patient nor the investigator knows 
the treatment group to which a patient belongs until the end of the experiment). 
Relatively simple, completely randomised designs are usually used with sample size 
being determined by a power analysis (see Chapter 11).

By contrast, samples of laboratory animals can be extremely uniform. As the 
statistical power of an experiment is largely determined by the variation among 
the experimental subjects (or ‘units’), even small experiments (usually of fewer 
than 50 subjects) with many treatment groups can be powerful. There are many 
factors (such as gender, age and additional treatments) which may influence the 
outcome, so factorial designs, say involving both sexes, can be used very effec-
tively. With laboratory animals the main sources of variability are the physical 
environment, time (due to biological rhythms), and human factors associated 
with the interactions between the animals and humans when the outcomes are 
measured. Randomised block designs (see Chapter 7) can be used to control such 
variation and thereby increase power. An internal indication of repeatability is 
given if blocks are set up over a period of time such as days or weeks. Such 
designs are also much less likely to produce biased results due to incorrect or 
unlucky randomisation.

There is also scope for the experimental unit to be something other than an 
animal. It might be a dish of cells from an animal, an animal used for a period 
of time in a crossover design, or a cage of animals in which all the animals in the 
cage receive the same treatment. As a result, animal experiments can combine small 
numbers of subjects with complex experimental designs. In clinical trials a power 
analysis is usually used to determine sample size. This method can also be used 
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Introduction and basic principles  9

in relatively simple animal experiments, but it is not so useful for complex experi-
ments. A different method, the ‘resource equation’ may sometimes be more useful 
(see Chapter 11).

Two additional types of experiment

Pilot experiments
The aim of a pilot experiment is to test the logistics of, and gain preliminary 
information for, a proposed future experiment. Is the experiment feasible? What 
are the bottlenecks in following the protocol? Is further training needed? Are the 
proposed dose levels (or equivalent) appropriate? What are the major sources of 
variability?

These are usually small experiments of no more than 5–20 experimental units, 
although there is no formal way of determining the appropriate sample size for this 
type of experiment. They are particularly important when an investigator is starting a 
new project involving techniques and protocols which have not previously been used 
by him/her. Failure to use pilot experiments can lead to a waste of resources and/or 
biased results due to unforeseen complications in an experiment. The results of pilot 
studies should not normally be published until they have been confirmed by further 
experimentation.

Exploratory experiments
Sometimes an investigator does an experiment ‘just to see what happens’, with-
out having any formal pre-specified hypothesis. Often this will involve measuring 
many outcomes. If these are then subjected to a statistical analysis some may be 
found to be statistically significant. If a hypothesis is formulated to account for any 
observed differences then, by definition, this post hoc hypothesis will fit the data, 
leading to a potential false-positive. So any hypothesis derived from an exploratory 
experiment must be tested in a confirmatory experiment before claiming that the 
effects are real.

Legal requirements and the 3Rs

In the European Union (EU) all vertebrates and cephalopods are protected animals 
under Directive 2010/63/EU. In the UK this is implemented through an amendment 
to the 1986 Animals (Scientific Procedures) Act. Similar local legislation has been 
implemented in each EU member state. A scientist planning to use animals must 
have the necessary qualifications and training to allow them to carry out such work. 
The legislation relies heavily on the 3Rs (Replacement, Refinement and Reduction), 
introduced in 1959 by Russell and Burch in their book, The principles of humane 
experimental technique (Russell and Burch, 1959).
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In the USA research workers can use the Guidelines for the care and use 
of laboratory animals as guidance on legal requirements. This is published by the 
Institute of Laboratory Animal Research (ILAR) (Committee for the Update of the 
Guide for the Care and Use of Laboratory Animals, 2011).

Replacement
The EU Directive requires that scientists should first consider whether the objectives of 
their experiment could be achieved using non-animal alternative methods (Replacement). 
Although this legal requirement may not exist in other countries, it is obviously ethically 
and economically important to consider alternatives. Could the scientific knowledge be 
obtained from research done in part or altogether using tissue culture or even mathemat-
ical modelling? If so, then those methods should be chosen in preference to the use of 
vertebrates. In most cases they will also be cheaper. In practice these non-animal meth-
ods are often complementary to any animal studies, and form part of an overall strategy. 
Considerable progress has been made in replacing the use of animals by in vitro chemical 
or immunological assays for biologicals such as insulin. Strenuous efforts are also being 
made to develop replacement alternatives in toxicity testing. In many cases chemicals 
and potential drugs which are likely to be excessively toxic to humans can be identified 
using these methods, so they can be rejected without the need for animal testing.

Refinement
If it is impossible to use a replacement alternative, the next step is to consider 
‘Refinement’. The aim is to minimise pain, suffering, distress or lasting harm to each 
animal. The animals need to be cared for by trained staff with ready access to a veteri-
nary surgeon. They should be free of clinical and subclinical diseases. Animals should 
be handled regularly and sympathetically so that they do not feel fear when entered into 
an experiment. When used in an experiment every care should be taken to minimise pain 
and suffering. Where substances are administered to animals, procedures which cause 
the least possible pain should be used (Morton, 2000). Surgery should be performed 
with appropriate anaesthesia and analgesia, with good post-operative care. Some exper-
iments are expected to result in substantial pain or the death of some of the animals. In 
such cases humane endpoints should be used (Stokes, 2000) (see also other papers in the 
same issue of the ILAR Journal). Animals which develop tumours should be painlessly 
killed before the tumours become too large. Often it is possible to predict with some 
degree of confidence that an animal is going to die, from its appearance and behaviour. 
Such animals should be painlessly killed rather than being left to suffer and die in pain. 
Finally, when the experiment is over the animals should be killed using an appropriate 
painless method such as one of the humane methods recommended by the UK Home 
Office (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/ 
229022/0193.pdf ), or the ILAR (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-
and-Use-of-Laboratory-Animals.pdf).

Moreover, good welfare increases uniformity among experimental subjects lead-
ing to the need for smaller sample sizes. Hence good animal welfare (see Chapter 2) 
is essential for good science.
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Reduction
This is the main topic of this book. It is concerned with minimising the number of 
animals used in each experiment, consistent with achieving the desired scientific 
objectives. It involves having a clear understanding of the objectives of the study, 
good control of variation, efficient experimental design, a justified sample size, and 
extraction of all the useful information by appropriate statistical analysis. The results 
then need careful interpretation.

Common errors in the design and 
analysis of animal experiments

The surveys mentioned above on the statistical quality of published papers, and the 
experience of the authors, point to some common errors.

Experiments done on an ad hoc basis
Experiments should be pre-planned, but sometimes additional groups or animals 
are added during the course of the experiment. Consequently, observed treatment 
differences may result from time factors such as circadian rhythms or failures in 
matching groups of subjects. It is not uncommon to see figures with footnotes 
such as ‘n = 3−6’ without further explanation being given. Well-designed and 
correctly randomised experiments normally have equal group sizes with an expla-
nation of how the sample sizes were estimated. Any deviations from this should 
be explained.

Bias due to faulty randomisation
Bias arises if there are systematic differences among the treated groups which are not 
due to the effects of the treatments. It can arise as a result of faulty randomisation. In 
clinical trials the patients will differ in the severity of their symptoms, and randomi-
sation is used to ensure that treatment groups are approximately equal in the levels 
of severity. If healthy normal animals are used, they will usually be so similar as to 
be indistinguishable. The purpose of randomisation in this case is to ensure that the 
environment in the animal house during the course of the experiment and during the 
measurement of the outcomes is randomised, so that environmental and time variations 
do not significantly affect groups differently. If surgically or drug-prepared animals are 
used then randomisation will also ensure that groups are balanced in terms of sever-
ity. Experimental subjects receiving different treatments should be intermingled. Once 
the treatments have been given the subjects should only be identified by a number so 
that when outcomes are measured the investigators do not know which treatment each 
individual received.

Even correct randomisation of small experiments may lead to bias if a completely 
randomised design is used. Animals in different treatment groups may by chance 
not be equally distributed among the animal house environments. A randomised 
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block design is usually both more reliable and more powerful than a completely ran-
domised design in situations where the experimental subjects are relatively uniform 
but the environment is heterogeneous.

Over-statement of n due to  
pseudo-replication
Incorrect identification of the experimental unit can lead to pseudo-replication in which 
there is an overestimate of the sample size denoted by n, leading to differences which 
are more significant than is fully justified. For example, if there are two animals per 
cage and the treatment is given in the diet or water, then the two animals cannot receive 
different treatments; and therefore the cage of two animals, not the individual animal, 
is the experimental unit. Pseudo-replication can be seen in an extreme form in some 
in vitro studies. Suppose, for instance, there are two dishes of cells, one of which has 
received a drug treatment while the other was kept as a control. If the diameter of 20 
cells is measured in each dish then n is 2, not 20. This is because the experimental unit is 
the dish, not the individual cells, as the cells cannot have received different treatments.

Experiments which are too small
Small experiments or ones where variation is poorly controlled may be unable to detect 
biologically important results, leading to a false-negative conclusion. However, such 
results are rarely followed up, so most false-negative results tend to remain undiscovered.

False-positive results due to the choice of  
significance level
A 5% significance level implies that on average 1/20 tests will show a false-positive 
significant difference between groups as a result of sampling variation.

The effects of confounding variables leading  
to false-positive or false-negative results
Inter-individual variation is usually well controlled in laboratory animals and, as a 
result, time and space effects are more visible. Physiological and behavioural results 
will be affected by circadian and possibly other rhythms, so measurements made in 
the mornings and afternoons may differ. Barometric pressure can affect the activity of 
animals (Sprott, 1967), and this will vary over various time periods. Different locations 
in the animal house can have different temperature, humidity and light levels. Even the 
gender and characteristics of the investigators and animal house staff can affect the ani-
mals. Investigators doing surgical procedures will themselves vary over a period of time 
as they become more skilled or more tired. If these factors are not taken into account 
they can lead to false-positive results due to bias or to false-negative results caused by 
increased heterogeneity among the experimental units. Many of these sources of varia-
bility can be controlled by using randomised block designs (see Chapter 7).
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Interactions involving factors such as gender,  
strain, environment and infection
Different strains and genders of mice, rats and other species can differ in their 
response to an experimental treatment. If an experiment is done using a sensitive 
strain or gender, then the results may not be repeatable in animals of less sensitive 
strains or genders. One of the dangers of using a single genetically undefined outbred 
stock is that different samples of animals may differ in their responses because they 
are genetically different. Subclinical infection can also alter the responses of labo-
ratory animals, so results obtained with infected animals may be non-repeatable in 
healthy ones, or vice versa. Changes in the microbiome may also affect the results. 
Some protection from this type of failure can be obtained by the use of factorial 
experimental designs using both genders and/or more than one strain. Pathogenic 
infections should be eliminated from the animal house.

Lack of repeatability due to the use of  
the wrong animal
Outbred stocks like Sprague–Dawley rats and ICR mice are genetically undefined. 
It is not possible to answer the simple question ‘what is a Sprague–Dawley rat?’ The 
problem is that these animals vary over both long and short periods of time, so it may 
be difficult to repeat an experiment because although the animals have the same name 
or designation they are genetically different. Genetically defined, stable, and identifia-
ble inbred and F1 hybrid strains of mice and rats have been widely used by geneticists 
and immunologists for several decades, resulting in many important discoveries, some 
of which have been recognised by the award of more than 22 Nobel prizes (Festing 
and Fisher, 2000). It is irrational to reject the use of inbred strains when their value in 
research has been so clearly demonstrated. These strains are discussed in Chapter 2.

Errors in the statistical analysis and 
interpretation of experimental results

There is enormous scope for making errors in the statistical analysis and interpre-
tation of data (Festing, 1992, 1994b; Ioannidis et al., 2014; Kilkenny et al., 2009; 
McCance, 1995). Mistakes include:

1. No statistical evaluation of the experimental results. This can lead to false-positive 
results when differences appear to be large but are in fact not statistically significant. 
This is common when percentages based on small numbers are being compared.

2. Choice of the wrong statistical method such as trying to analyse an experiment 
with more than two means using Student’s t-test instead of the ANOVA.

3. Severe non-normality of the residuals and/or heterogeneity of variances not 
taken into account when using a parametric test such as the ANOVA.

4. Elimination of outliers without explanation. They may not be wrong just because 
they are outliers.
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5. Choice of non-parametric methods when parametric methods are available. This 
can lead to false-negative results because non-parametric tests often lack power.

6. Assuming a causal relationship between two variables when using correlation.
7. Misinterpretation of a non-significant P-value >0.05 as evidence that there is no 

effect. Lack of statistical significance may just be a consequence of the sample 
size being too small to detect an effect.

8. Sometimes a statistical analysis is simply not appropriate. For example, in one 
study the liver weight of rats was compared with untreated controls, using a 
t-test, immediately after half the liver had been removed. It is trivial to test the 
hypothesis that half a liver weighs less than a whole liver.
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2
Choice of animals and 
their husbandry

Introduction

Investigators should use high quality, healthy animals which are appropriate models 
for the question investigated. They should be free of clinical and subclinical infec-
tions, fed a nutritionally adequate diet and housed in an enriched environment. Social 
animals such as mice and rats should be group-housed because single housing is 
stressful (this is a legal requirement under the EU Directive 210/63/EU). Ideally, 
mice and rats, should be ‘genetically defined’ (i.e. isogenic, mutant or genetically 
modified) rather than be undefined, because samples of genetically undefined ‘outbred’ 
mice and rats may be genetically different even if they have the same name, making 
it more difficult to repeat an experiment. It makes no ethical, scientific or economic 
sense to use poor quality animals or those housed in an inadequate environment if 
that reduces the scientific quality of the work.

Choice of species, animals as models 
and the ‘high fidelity fallacy’

The choice of species will often be dictated by the availability and relevance of a 
model for the condition of interest. A ‘model’ is a representation of the target of 
interest, such as a human. The model has to be like the target in some ways, but it is 
always unlike the target in other ways. For example, a map is a model of a country or 
a city; it is like the target only in the relative positions of topological features, but is 
unlike the target in virtually every other respect, and can only be used for the specific 
purpose for which it was designed.

A mouse might be a model of a human with respect to its response to a toxic 
compound, but it is unlike a human in that it is small. This is an advantage because 
mice are cheap and relatively easy to maintain. Sometimes a model is more useful 
if it differs from the target in a specific way. For example, inbred strains are widely 
used in research because, unlike humans, many genetically identical animals can be 
produced. These are, in a sense, like immortal clones of a single individual. Usually 
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they are less variable than outbred stocks so sample sizes can be decreased; or if not, 
the resulting experiment will be more powerful (i.e. there will be a greater chance 
that a small treatment effect will be detected).

According to Russell and Burch (1959), there are two dimensions that need to 
be considered when choosing a research model. The ‘fidelity’ of the model is the 
extent to which the model resembles the target in every respect. So a high fidelity 
model of humans might be a non-human primate and a low fidelity model could be 
a dish of cultured cells. The second dimension is the ability of the model to discrim-
inate between interventions. It may be better to use a low fidelity model if it has 
good ability to discriminate between interventions of interest. For example when 
Russell and Burch published their book, human pregnancy was tested using a mouse 
or rabbit uterus assay or a frog ovulation test. As these are live animals, this was a 
relatively high fidelity model of the reproductive state of a woman. However, a home 
pregnancy testing kit has replaced the use of live animals. It is a low fidelity model 
(very unlike a human), but has excellent ability to detect pregnancy. Russell and 
Burch showed that it is a fallacy to claim that high fidelity models should always be 
preferred. Detailed information on the characteristics of individual species and more 
general information on all aspects of laboratory animal science is given in The UFAW 
Handbook on The Care and Management of Laboratory Animals (Hubrecht and 
Kirkwood, 2010), The Handbook of Laboratory Animal Science (Hau and Shapiro, 
2011; Hau and Van Hoosier, 2002) and the COST Manual of Laboratory Animal Care 
and Use (Howard et al., 2011).

Freedom from disease

Before about 1950 all species of laboratory animals carried a wide range of viral, 
bacterial and metazoan pathogens. These caused clinical or subclinical disease which 
disrupted research by decreasing lifespan and increasing variability, so that more 
animals were needed, and in some cases by interacting with the experimental treat-
ments to give spurious results. Thus, the average lifespan of a laboratory rat in the 
1930s was only about 12 months compared with 2–3 years today. A major cause 
was infection with Mycoplasma pulmonis and other microorganisms which caused 
chronic respiratory disease. At one stage, it was thought that vitamin A deficiency 
caused lung damage because rats which were vitamin A deficient had more serious 
lung lesions than non-deficient rats. However, it was subsequently found that the 
physiological stress of vitamin A deficiency was increasing the lung lesions normally 
associated with chronic respiratory disease (Lindsey et al.,1971).

So-called ‘conventional’ animals with clinical or subclinical disease are usu-
ally more variable than healthy ‘specific pathogen free (SPF)’ ones, so more are 
needed in an experiment to achieve a given level of statistical precision. In one study 
(Gartner, 1990), the standard deviation of the kidney weight of conventional rats 
suffering from chronic respiratory disease was 43.3 (arbitrary) units, whereas it was 
only 18.6 units in healthy SPF rats. Using a power analysis (see Chapter 11) with 
the assumptions that (1) a 10 unit difference between the treated and control groups 
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would be the minimum difference likely to be of scientific interest; and (2) an 80% 
chance of detecting it would be acceptable, an experiment using 55 healthy rats per 
group or 295 unhealthy rats per group would be needed. In addition, there would 
be no assurance that any observed response would be qualitatively the same as in 
healthy SPF animals.

Techniques to develop SPF animals were developed in the late 1950s as a means 
of eliminating pathogenic microorganisms. Fetuses in utero are usually microbiologi-
cally sterile. These were removed from their mother just prior to parturition, under 
sterile conditions, and hand-reared in an isolator using sterile milk and diet. Although 
these germ-free or ‘gnotobiotic’ animals survived and bred, they were abnormal in 
many respects, and were difficult and expensive to maintain. Further research showed 
that animals infected with a suitable cocktail of non-pathogenic gut bacteria resembled 
normal conventional animals which were free of disease. Colonies of these animals 
were later established in ‘barrier’ animal houses in which all supplies of diet, bedding 
and equipment were sterilised to prevent reinfection with pathogens.

Although these SPF animals sometimes pick up unwanted microorganisms, often 
from the staff, they are essentially like conventional animals which are free of all 
important pathogenic microorganisms.

SPF mice, rats, rabbits, and some other species are now universally available from 
both commercial breeders and academic institutions in developed countries. These 
should have been regularly screened and found to be free of certain defined viruses, 
bacteria and parasites, details of which will normally be provided by the breeder 
on request. However, not all animal colonies are free from infection, and great care 
should be taken that animals being imported to an animal house should be quarantined 
under veterinary supervision even if the parent colony is nominally free of pathogens.

The genetic definition of mice and rats

There is a bewildering range of ‘genetic’ types of these two species. They fall into 
three main types: (1) outbred stocks, (2) inbred (isogenic) strains, and (3) genetically 
modified and mutant strains.

Outbred stocks
Outbred stocks are breeding colonies of genetically heterogeneous animals, usually 
maintained by some form of random or rotational mating, often avoiding the mating 
of closely related individuals (the term ‘stock’ is used for outbred colonies while 
the term ‘strain’ is used for inbred ones). These are still widely used in biomedical 
research. According to one estimate between January 2002 and July 2007 about 33% 
of all mouse studies and 85% of all rat studies used such stocks (Chia et al., 2005) 
Many outbred mice and rats are also used in the pharmaceutical industry in the early 
stages of drug development. Such work is rarely suitable for publication. However, it 
is not clear whether scientists using these animals fully understand the implications 
of using these so-called ‘genetically undefined’ animals in their research.
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Nomenclature of outbred stocks
Rules for the nomenclature of outbred stocks can be found at http://www.infor 
matics.jax.org/mgihome/nomen/strains.shtml (accessed 19 January 2016). Stocks 
are identified by a designation such as ‘CD-1’ or ‘ICR’. The stock name should 
be preceded by a laboratory code followed by a colon. For example, Tac:ICR is a 
mouse stock designated ‘ICR’ (Institute of Cancer Research) now maintained by 
Taconic Farms. Crl:CD(SD) is an outbred stock of rats designated ‘CD’ and main-
tained by Charles River Inc (Crl). It is of Sprague–Dawley origin. Outbred stocks 
are genetically undefined, i.e. there are no genetic markers which can be used to 
identify a stock. There is no assurance that stocks with the same name but from a 
different supplier will be the same or that stocks with different names are geneti-
cally distinct. It is not even possible to distinguish genetically between Wistar and 
Sprague–Dawley, the two most widely used stocks of rats. Rats from a colony des-
ignated ‘Sprague–Dawley’ will probably differ from one designated ‘Wistar’, but 
rats from another colony of Sprague–Dawley will probably also differ genetically 
from the first one.

Origin of mouse and rat outbred stocks
A list of the origin of 38 named mouse stocks was compiled in 2005 (Chia et al., 
2005). Many of these are maintained by commercial breeders, and are used for 
research which does not require any specific characteristics. However, a few of 
them have special characteristics, sometimes as a result of selective breeding. For 
example, the ABH and ABL mouse stocks are the result of selective breeding for 
immune response to sheep red blood cells. The LS and SS mouse stocks were selec-
tively bred for long and short sleep time under alcohol anaesthetic and the SENCAR 
mouse stock was developed for sensitivity to skin carcinogens. In some cases these 
selected outbred stocks were subsequently inbred in order to fix their characteristics. 
There are also a number of genetically heterogeneous mouse stocks such as HSCC, 
HSCDHG, HSIBG and HSNPT which were developed from crosses between inbred 
strains. These are used for genetic investigations such as genome wide association 
(GWA) studies. There are no recent comprehensive lists of rat outbred stocks, but 
some information is available from commercial breeders.

Genetics of outbred mice
Little was known about the genetics of outbred stocks of laboratory mice and rats 
until DNA-based genetic markers became available. In 1974, before DNA markers 
were available, a study of commercially available outbred mice using highly inher-
ited phenotypic markers (bone shape) found many anomalies in such stocks. Stocks 
with the same name were sometimes phenotypically quite different and stocks with 
different names were sometimes similar to each other (Festing, 1974). Genetic drift 
was also found in a mouse stock, which was probably due to genetic contamina-
tion from the foster mothers when a colony was rederived after becoming infected 
(Papaioannou and Festing, 1980).
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There have now been two studies investigating the suitability of commercially 
bred outbred stocks for GWA studies. These associate phenotypes of biomedical interest 
with gene loci segregating within the stock. They provide a powerful research tool 
for finding genes of biomedical interest. The ideal population for GWA studies would 
have a high level of genetic variation, low levels of linkage disequilibrium, few rare 
alleles, and no substructure within the colony.

In the first study CD-1 mice maintained by a single company at three locations 
(Aldinger et al., 2009) were found to show patterns of linkage disequilibrium and 
heterogeneity similar to wild-caught mice. The three populations were genetically 
distinct, somewhat similar to related human populations, and the differences were 
consistent with founder effects. Highly significant phenotypic differences in condi-
tioned freezing to an audio tone were found among the three populations. However, 
it was unclear whether these phenotypic differences were a result of genetic dif-
ferences or because the mice came from different environments. The ancestry of 
laboratory mice is known to include a number of subspecies. By including three 
inbred wild-derived strains representing the three subspecies it could be shown that 
the genome of CD-1 had 75% M. m. domesticus, 19% M. m. musculus and 6% M. 
castaneus ancestry.

A second investigation involving 66 outbred mouse colonies (Yalcin et al., 2010) 
found that genetic variation among all the colonies was surprisingly high, being 
about 10 times higher than that found in humans, with 45% of the genetic variation 
being due to differences between colonies. Possibly this is because laboratory mice 
are derived from three subspecies as noted above.

Over 95% of genetic sequences found in the outbred stocks were also present 
in inbred mouse strains. However, 4/66 colonies were almost entirely inbred, and 
a further five were somewhat inbred. These would not be suitable for GWA stud-
ies. In most cases gene flow appeared to have occurred between colonies (i.e. genetic 
contamination). This was not surprising as in the past breeders sometimes crossed 
their outbred stocks in order to increase breeding performance. Moreover, these 
animals were mostly maintained by commercial breeders who sometimes trade-
marked their stock designation so that new colonies derived from one of these 
colonies had to be renamed. Six of the stocks were resampled at least one year 
later, and while five of them were unchanged, one of them (HsdOla:MF1) had 
changed substantially between 2003 and 2007, with heterozygosity declining 
from 0.30 to 0.05. This change was due to rederivation to eliminate infectious 
microorganisms.

In the absence of genetic contamination or genetic bottlenecks, the genetic archi-
tecture of colonies will remain stable because the colonies are usually maintained in 
such large numbers.

Genetics of outbred rats
Although there have been many GWA studies in rats, they have been focused on 
the study of a particular phenotype such as susceptibility to stroke, diabetes or drug 
abuse. In some cases these have used commercial stocks of Sprague–Dawley rats, 
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but no comparative studies of Sprague–Dawley versus Wistar rats or stocks of rats 
from different breeders have been performed which would throw light on the genetics 
of commercial rat stocks.

Genetically defined strains
These include inbred strains, F1 hybrids, congenic strains, and monozygous twins.

Inbred strains
Inbred strains of mice, rats and a few other species are produced by 20 or more 
generations of brother-by-sister mating, with all individuals being derived from a 
single breeding pair in the 20th or a subsequent generation. They are, in a sense, like 
immortal clones of genetically identical individuals because the same genotype is 
transmitted to each generation.

Inbred strains tend to be phenotypically uniform (when compared with outbred 
stocks). They stay genetically constant for many generations, and most have been 
genotyped at many loci, with the full DNA sequence being known for an increasing 
number of strains. There is substantial background information on the origin, history, 
genotype and phenotypic characteristics of each strain. Genetic quality control is rel-
atively easy as, unlike outbred stocks, each animal can be genetically authenticated 
from a small sample of DNA.

Over 400 separate inbred strains of mice and 200 strains of rats are available 
throughout the world, and many are commercially available. They represent the 
nearest thing to a pure analytical grade reagent that is possible with animals, and sev-
eral Nobel prizes have been awarded for work which depended on their use (Festing 
and Fisher, 2000). More Nobel prizes have been awarded since then.

About 80% of research involving isogenic strains is performed using the 10 most 
popular strains, with BALB/c, C3H, C57BL/6, CBA and DBA/2 being among the 
most widely used mouse strains and F344, LEW, SHR, WKY and BN being among 
the most widely used rat strains.

Each strain has its own unique characteristics, and strain differences can be found 
for almost any characteristic which has been studied. Some strains have a high inci-
dence of cancer, others of heart disease, others have neither. Some are active, others 
are passive. Some like and others detest alcohol. Some learn well and others not so 
well in a particular learning task. Naturally, care has to be taken when choosing a 
strain which is appropriate to the particular research project. It would not be sensible 
to use the AKR mouse strain in a long-term carcinogen screening study because most 
of these mice would have died of leukaemia before they were one year old.

For general research where there is no requirement to use animals of a specific 
strain, the best strategy would be to use one or more of the most popular strains such 
as BALB/c or C57BL/6 mice or F344 or LEW rats. Where a series of experiments 
is planned it might be useful to do a small pilot study involving several strains to 
find one which responds most appropriately. It would be unwise to do a long series 
of experiments using a single strain without occasionally using a different strain to 
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make sure that the observed results are not unique to the chosen strain, although if 
the strain is unique in its response, this may itself be of interest.

Lists of inbred strains of mice and rats, with some of their phenotypic character-
istics, are available on the Web (www.informatics.jax.org), and the genealogies of 
inbred mouse strains was updated in 2000 (Beck et al., 2000).

F1 hybrids
F1 hybrids, the first generation cross between two inbred strains, are also isogenic, 
and have the advantage that they tend to be more robust due to hybrid vigour. They 
can be used instead of, or in association with, inbred strains. However, unlike inbred 
strains they will not breed true as they are heterozygous at all the loci at which the 
parental strains differ, leading to genetic segregation in the F2 and later generations.

The correct genetic nomenclature should always be used so that the work can be 
repeated in other laboratories. The formal nomenclature rules are available at www.
informatics.jax.org. Briefly, strains are known by a code which consists of a few 
upper-case letters and sometimes a number with a laboratory code. The rules are 
relatively well observed with mice but not so well with rats. Rat strains should be 
designated by a code such as F344, BN, LEW, not by a name, as this does not con-
form with the nomenclature, and can cause confusion.

Congenic, consomic and recombinant  
inbred strains
These are specialised types of isogenic strains developed largely for genetic stud-
ies. A pair of congenic strains is produced by backcrossing a defined genetic locus 
(the differential locus) from a donor strain to an inbred strain (the inbred partner). 
After about 12 generations of backcrossing the congenic strain will be very similar 
genetically to its inbred partner, but will differ at the differential locus. Any differ-
ences between the congenic strain and its inbred partner can (with some reservations) 
therefore be attributed to the effects of the differential locus.

Congenic strains have been widely used in transplantation immunology (Snell 
and Stimpfling, 1966), and many laboratories studying quantitative trait loci are now 
using these methods to isolate and study quantitative trail loci (QTLs) which control 
many disorders such as cancer, hypertension and diabetes. Genetic markers can be 
used to speed up the backcrossing program (Markel, 1997).

Sets of consomic strains differ from an inbred partner strain for a whole chromo-
some, which is derived from a donor strain. They are used in the genetic dissection 
of characters controlled by QTLs (Nadeau et al., 2000).

Several sets of recombinant inbred strains have also been developed from a cross 
between two standard inbred strains followed by 20 or more generations of brother- 
by-sister mating to produce a large number of new recombinant strains. These can 
be used to map genetic loci where the phenotypes differ between the two parental 
strains (Taylor, 1996). Further details of these and other genetic types are given by 
Silver, 1995.
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The choice of inbred strains or outbred stocks in 
controlled experiments
When designing an experiment it is important to choose the right animals for the 
proposed study. Genetic variation is a major component of the variation in labora-
tory animals. GWA studies, for example, need genetically segregating outbred stocks 
with high levels of heterozygosity, low levels of linkage disequilibrium, and high 
expression of the phenotypes which are to be studied.

By contrast, randomised controlled experiments need uniform experimental sub-
jects otherwise they will lack statistical power or larger sample sizes will be required. 
Inbred strains are generally more uniform than outbred stocks, so experiments using 
them will usually be more powerful and more likely to identify a treatment effect 
although strains may differ in their responses. A further advantage is that inbred 
strains are genetically defined so it is possible, from a sample of DNA, to test the 
animals to see if they are of the correct strain. Moreover, there is much more infor-
mation about the phenotypic characteristics of inbred strains than of outbred stocks 
so it is possible to make a better informed choice of which strains to use.

The importance of phenotypic uniformity is illustrated in Table 2.1. This shows 
sleeping time under hexobarbital anaesthetic in five inbred strains and two outbred 
stocks of mice (Jay, 1955).

For instance if an experiment were to be set up to determine whether a drug 
influenced sleeping time in mice, there would be a drug-treated and a vehicle-treated 
group. Using a power analysis (see Chapter 11) with a 5% significance level, a two-
sided test and a 90% power, an experiment designed to detect a 4 min change in 
sleeping time (mean SD of the 5 inbred strains = 3.2 mins.) between a treated and a 
control group would require 15 inbred mice or 240 outbred mice (mean SD=13.5) 
per group using the mean of the standard deviations of each group. Admittedly, this 
is an extreme example, but it illustrates the over-riding importance of controlling 
inter-individual variability, some of which is genetically determined.

Table 2.1 Sleeping time (mins) under hexobarbital anaesthetic in inbred and 
outbred mice. 

Type and strain n Time SD Needed

Inbred 

A/N 25 48 4

BALB/c 63 41 2

C57BL/HeN 29 33 3

C3HB/He 30 22 3

SWR/HeN 38 18 4

Mean inbred 37 32.4 3.2 15

Outbred

CFW 47 48 12

Swiss 47 43 15

Mean outbred 47 45.5 13.5 240

See text for explanation (Jay, 1955). SD: standard deviation.

02_FESTING_Ch 02.indd   22 15-Apr-16   10:05:27 AM



Choice of animals and their husbandry  23

Environment and diet

Bedding, diet and physical environment can influence the outcome of an experi-
ment. Reputable suppliers of bedding now generate their own sawdust from chosen 
timber known not to have been treated with insecticides. Softwood sawdust con-
tains substances which may induce drug metabolising enzymes. These can alter the 
response of mice to toxic agents. Thus, in one study it halved the sleeping time of 
mice under barbiturate anaesthetic compared with mice maintained on hardwood 
bedding (Vesell, 1968), and in another it completely altered the response to a toxic 
chemical (Malkinson, 1979).

The frequency with which animal cages are cleaned may influence their responses. 
Mice and rats are uncomfortable if their cage is changed too frequently, but ammonia 
levels can build up to levels which might predispose the animals to respiratory dis-
ease if the cages are not cleaned frequently enough (Hoglund and Renstrom, 2001).

Diet can have an important influence on the characteristics of animals, particularly 
those on long-term studies. Modern rodent diets should be nutritionally complete and 
free of contaminants. Diets formulated to maintain pregnancy and lactation may be 
too nutritionally dense for the long-term maintenance of non-breeding rodents. One 
result is that these animals may become obese and develop a high incidence of diabe-
tes, cancer and circulatory disorders, with shortened lifespans. Unfortunately, it has 
proved to be difficult to formulate diets which prevent this obesity. Dietary restriction 
may be a way of prolonging the life of animals on long-term studies (Masoro, 1993).

The physical environment can also influence the animals. It is a requirement 
under Directive 63/2010/EU that social animals such as mice and rats are group-
housed unless a strong scientific case can be made for single housing.

Caging density may also influence the incidence and type of disease in mice 
(Les, 1972). On the other hand, male mice housed in groups may start to fight. An 
experimental protocol should never involve regrouping adult male mice as they are 
almost certain to fight.

Environmental enrichment is now widely practised. It has been shown to lead 
to the generation of more hippocampal neurons in mice (Kempermann et al., 1997).

Standardisation, reproducibility and external validity
Environmental enrichment in cages has been found generally not to have an effect 
on individual variability in mouse behaviour (Wolfer et al., 2004). On the other hand 
group-housed mice have been found to be more variable than singly-housed ones 
with regard to some traits (Prendergast et al., 2014). In this case sample sizes need 
to be increased. But the relationship between environmental enrichment, variability 
and reproducibility represents an important consideration that researchers should be 
aware of.

The concept of reproducibility is crucial to research. But in the context of animal 
studies so is external validity, i.e. the applicability of a result to other species (usually 
humans) living in inevitably different conditions. This is after all the bedrock of 
biomedical sciences.

02_FESTING_Ch 02.indd   23 15-Apr-16   10:05:27 AM



24  The design of animal experiments

Some authors have argued that efforts to standardise conditions, and therefore 
reproducibility, by rigorously homogenising environmental conditions within an 
experiment or a laboratory may, paradoxically, militate against reproducibility. 
For example, Fisher (1960) notes that ‘the exact standardisation of experimental 
conditions, which is often thoughtlessly advocated as a panacea, always carries 
with it the real disadvantage that a highly standardised experiment supplies direct 
information only in respect of the narrow range of conditions achieved by stand-
ardisation. Standardisation, therefore, weakens rather than strengthens our ground 
for inferring a like result, when, as is invariably the case in practice, these conditions 
are somewhat varied’.

However, this does not mean that conditions should be randomly varied. Cox 
(1958) explains that ‘we should, in designing the experiment, artificially vary condi-
tions if we can do so without inflating the error’. This is done by using factorial and 
randomised block designs which sample different factors and environments without 
inflating the error. ‘Standardisation fallacy’ has recently been discussed in detail in 
relation to experiments involving laboratory animals (Wurbel, 2000). The effect of 
variation, and means of controlling it, is the topic of the next chapter.
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3
Understanding and 
controlling variation

Introduction

Experiments can only be designed efficiently and economically if the research 
worker has a good understanding of biological variability, its causes, and ways in 
which experiments can be arranged in order to quantify and control it. There are 
two types of variability that need to be taken into account. Random variability (or 
random effects) due, for example, to uncontrolled inter-individual differences, and 
‘fixed effects’ such as the sex, strain, age, diet and bedding which can be controlled 
to a large extent by the investigator. The experimental treatment is also a fixed effect. 
The ways in which these are handled are discussed in this chapter.

Statistical testing

The majority of statistical tests compare the size of the effect (the biological ‘signal’) 
relative to the amount of variability in the data (the ‘noise’). Figure 3.1 illustrates 
what might be concluded about the same biological effect, under two different sce-
narios. In the first of these, the background variability is relatively low, and in the 
second, the variability is relatively high. An analogy would be a lecturer trying to 
speak with a loud radio in the same room.

The lecturer has a number of options:

1. Speak louder (increase the signal).
2. Turn the radio down (decrease the noise).
3. Find a different way to get the message across (e.g. seek an alternative method 

for delivering the signal such as a silent visual presentation).

In a statistical test, the ratio of signal-to-noise determines the significance. Hence if 
the variation or noise is large in an experiment, the biological effect, the signal may 
be hidden by it. There are usually many sources of noise in biological data. Imagine 
the same lecturer in a room with many radios. The task of turning the radios down 
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should now involve a first step of identifying the loudest radio(s). Only then can 
the noise be reduced. The experimenter should not automatically assume that the 
animal is the main source of noise. Measurement error of various sorts may well 
be important, and this can often be controlled by better experimental technique, by 
increasing the number of determinations, or by using blocking (see Chapter 7) or 
covariance (see Chapter 8) to eliminate otherwise uncontrollable variation. All lab-
oratory determinations and techniques should be done to the highest possible ‘GLP’ 
(Good Laboratory Practice) standards.

Sources and types of variation: 
fixed and random effects

What causes the variability? In a training course, a group of scientists were asked 
to write down possible sources of variability in their experiments, and these were 
grouped together into the categories shown in Table 3.1. These variables do not all, 
necessarily, cause experimental noise. They fall into two main classes designated 
‘fixed effects’ and ‘random effects’.

Fixed effects
These variables may affect the outcome of an experiment, but they are largely under 
the control of the experimenter, and are of particular importance when considering 
the design of the experiment and in the interpretation of the results. The imposed 
treatment is the most obvious fixed effect, but the species, strain, sex, age or weight 
range of the animals, type of caging, type of bedding material and many of the other 
factors listed in Table 3.1 can be specified by the researcher. Often, it is a matter of 
scientific judgement whether the conclusions from an experiment using, say, male 
rats can be generalised to female rats or whether it makes any difference whether 
the rats were eight or 10 weeks old at the beginning of the experiment. But if it is 
expected that the response may be different in the two sexes, or age groups, then 
there are two possible courses of action. First, the scientist may be content to state 
that the results are only applicable to the sex or age of animals used in the experi-
ment. Second, a factorial experiment (see Chapter 6) involving both sexes or ages 

Signal
Noise

=strong statistical significance

Signal
Noise

=no statistical significance

Figure 3.1 If the noise is low then the signal is detectable, but if the noise  
(i.e. individual variation) is high then the signal will be undetected. The signal may 
be the difference between two means and the noise could be the pooled standard 
deviation.
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as well as the treatments of interest could be used to explore whether or not this is 
the case. Usually this can be done without increasing the total number of animals 
(or other experimental units).

Some fixed effects such as gender and genotype are classifications. These cannot 
be randomised in the normal way. For example, an animal can be assigned treatment 
A or B, but it cannot be assigned male or female. If the experiment involves classifi-
cation variables, such as genotype, it is up to the investigator to ensure that subjects 
are comparable in other ways apart from the classification. So, the males and females 
should be the same age and from the same source, although they are unlikely to be 
of the same body weight. Weight may be considered to be one part of the gender 
differences.

All experiments involve the choice of a wide range of fixed effects. So the inves-
tigator must decide which effects are likely to be of trivial importance, which may 
influence the interpretation of the results, and those which might need to be explored 
using factorial experimental designs.

Random effects
These are the variables that usually contribute noise or unwanted variability 
among the experimental units. Heterogeneity in body weight within the speci-
fied weight range, genotype within an outbred stock (although the experimenter 
can choose whether to use Wistar or Long–Evans rats, so the stock is usually a 
fixed effect), accidents of development, social hierarchy and within-group aggres-
sion, subclinical variation in pathogen burden, poorly mixed diet, inaccurately 
administered dose levels, contamination of blood or urine samples, inaccurate 
measurements or measurements made near the limits of detectability all contribute 
to variability and noise.

Table 3.1 Some of the variables which may influence the outcome of an 
experiment.

Environment Temperature, humidity, season, barometric pressure, lunar 
cycle, noise, air movement, light level and cycle, smells, room 
characteristics, cage size and design, bedding material, nest box 
design, nest materials, number and gender of animals, water 
quality, diet availability and composition, handling, cleaning

Animals Species, sex, strain, genotype, health status/microflora and 
fauna, origin, age, body weight, litter size, oestrus in females, 
aggression, biological rhythms

People Gender of technicians and investigators, use of cosmetics, care 
with handling, investigator personality

Experiment Type/quality of surgery, route of administration, dose levels, 
sampling of tissues/organs, time of day, test materials, shelf-life 
of solutions, calibration of instruments, measurement errors
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In an experiment, random effects are nearly always to be controlled or avoided, 
but this is done in a different way from fixed effects.

1. The first step is to try to obtain experimental material with a low intrinsic noise 
level. Isogenic animals (see Chapter 2), free of pathogens and of a narrow age/
weight range, well acclimatised and housed in compatible groups in a good ani-
mal house is often the starting point.

2. Variability that occurs over time due to biological rhythms or the shelf-life of 
reagents can often be partially controlled by using a blocked design or cova-
riance analysis (see Chapters 7 and 8), as can some of the variability due to 
position of the cages in the animal house.

3. Measurement errors can often be substantially reduced using multiple sample 
determinations. There may be a whole hierarchy of possibilities. In isolating 
enzymes or mRNA from a liver, several samples of liver could be taken and sev-
eral determinations could be done on each. These would be averaged, although 
it is possible to do a ‘components of variance’ analysis to estimate the amount 
of variation associated with each level of sampling (see Chapter 8). Exactly how 
many liver samples and determinations per sample are chosen will depend on 
variation among samples and determinations.

4. Finally, if large levels of variability persist, and cannot be identified and con-
trolled, then sample sizes can be increased to provide an experiment with 
sufficient statistical power to identify the smallest effect likely to be of clinical, 
biological or scientific interest (see Chapter 11).

The distinction between fixed and random effects is not always clear-cut. Body 
weight is a fixed effect if a weight range (e.g. 100−120 g) is specified, but within that 
range it will be a random effect which may cause noise. Likewise, if unsexed animals 
were used, then sex would be a random effect, but more usually the sex of the ani-
mals will be controlled, making it a fixed effect. The important point is whether the 
variable contributes uncontrolled noise, or whether it can be specified and controlled 
and/or studied as a factor in a factorial experimental design.

Although treatment is usually considered to be a fixed effect, in some cases an exper-
iment is used to determine the magnitude of a random effect. For example, the effect of 
variation in commercial mouse diets on body weight of mice maintained on the diets 
could be determined by taking a random sample of diets from all available diets, and feed-
ing these to mice under specified conditions. The results would normally be expressed in 
terms of the proportion of variation in mouse weight which could be attributed to varia-
tion among the diets. A brief example of this type of analysis estimating variation within 
and among cages and the associated statistical analysis is given in Chapter 8.

Identification of the important 
sources of variability

If the variation associated with what are assumed to be the most important random 
and fixed effects can be quantified, then a rational approach can be used to control 
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or minimise its effect. For example, a randomised block design may be used if there 
are large fluctuations in mean results over a period of time or if the experiment has to 
be split into two rooms or even two shelves which may have different environments. 
Pilot experiments can be useful if several similar experiments are contemplated. For 
example, the experiment shown in Figure 3.2 was designed to explore the impor-
tance of day-to-day variation, animal size, the number of samples taken, and the 
analyst who analyses the samples. Note that animal size is a fixed effect, but the 
other variables are random effects if it is assumed that the two analysts are chosen 
from a pool of possible analysts.The resulting data could be analysed to show the 
relative importance of each of these variables. Thus, if there were large differences 
associated with animal size, then it would imply that body weight would need to be 
rigidly controlled and possibly included as a factor in a factorial experimental design. 
The latter would be appropriate if there were suspicions that the response might be 
different in large and small animals. If the day-to-day variation was relatively large, 
it could be controlled using blocking (see Chapter 7). If there were larger differences 
between samples, then triplicate or quadruplicate samples might be appropriate.

Examples

Atherosclerosis
In a study to investigate the effects of drug treatments in a rabbit model of atheroscle-
rosis, there were three drug treatments and four animals on each drug. At autopsy the 
aorta was removed and five lateral sections were cut. The lesion area in each section 
was measured using image analysis software. An hierarchical analysis of variance 
(discussed in Chapter 8) was used to quantify the variability between sections, ani-
mals and drug treatments, and it was found that 47% of the variation was due to the 
variation between sections, 35% due to the effect of the drug (a fixed effect), and 
18% due to the inter-animal variation. Thus, the best way of improving the power or 
precision of such an experiment would probably be to take more sections, rather than 
using more animals, as this may also be the cheapest alternative both financially and 
in terms of animal use.

Day 1

Animal size Small Medium Large

Samples

Analyst

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

2

Small Medium Large

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

Figure 3.2 The structure of a ‘nested’ experiment designed to quantify the 
amount of variation between days, sizes of animals, samples and analysts.
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Stroke
In a pilot experiment to study the effect of a new drug on a stroke model caused by 
occlusion of the median carotid artery in rats, a factorial design was used to explore 
the effect of the three occlusion periods (30 min, 45 min and 60 min) and two drugs, 
using five rats per group. Note that the occlusion period and drug treatment are fixed 
effects, hence the use of a factorial design (see Chapter 6). Most responses were highly 
variable. However, it was found that the variability was minimised with the 60 min 
occlusion period. With the 30 min period some rats did not develop stroke lesions, 
hence they were not responding to the drugs. Thus, rather than increasing the number 
of animals, it would be better to use the longer occlusion period in order to design 
more powerful experiments in the future. Factorial designs are often used in this way to 
determine an optimum set of conditions for obtaining the maximum yield of a product.

Randomisation and blinding

Randomisation is one of the essential features of most experiments. The 
investigator who declines to randomise is digging a hole for himself, and 
he cannot expect the statistician to provide the ladder that will help him out. 
(Finney, 1978)

The aim of experimental design is, as far as possible, to remove all sources of variation 
among the experimental units both at the start and during the course of the experiment, 
apart from the explicit treatment or intervention. Although many differences can be 
controlled, some variation will always remain.

However similar they may be, no two animals and the environments in which they 
are maintained are identical. Even if they were identical it would be impossible for the 
same operator to administer the treatment simultaneously and measure the depend-
ent variable at the same time, thus giving rise to differences in operator and time. 
Randomisation is essential to ensure that these remaining and inescapable differences 
are spread among all treatment groups with equal probability, thereby providing a reli-
able estimate of experimental variation or error and minimising any potential bias.

Note that it is not just a case of randomising the animals to the treatments. It is 
imperative that the randomisation applies to all aspects of the experiment such as the 
positions of the cages in the animal rooms and the order in which determinations of 
the outcome are made. It follows from this that a ‘control’ group, where one of the 
treatments is considered as a control, cannot be separated from the experiment. It 
should be studied at the same time as the other treatments. ‘Historical controls’, for 
example, are unlikely to be valid except in the special case of when many identical 
tests or ‘screens’ are done over a period of time in the same laboratory, so that it is 
possible to estimate both the mean and the variation between samples.

Basic randomisation procedures
The best way of ensuring that the randomisation is done correctly is to number the 
cages (or other experimental units) and then assign the treatments to them at random 
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using one of the methods described below. All subsequent procedures such as the 
positioning of the cages in the animal house and the measuring of the outcome should 
then be done by cage number. This will ensure that there are no systematic differ-
ences between treatment groups, for instance in the location in the animal house or 
in the order in which the observations are made.

Physical randomisation
Physical randomisation is extremely easy. The experimental units (e.g. animals) are 
numbered 1−n, where n is the total number of experimental units and the numbers 
are also written on slips of paper which are folded and put in a receptacle. This is 
thoroughly shaken, and assuming a group size of four, four slips of paper are with-
drawn and the numbers drawn are assigned to treatment A, the next four withdrawn 
to treatment B, and so on.

Using EXCEL and other computer software
Any good statistical package will have procedures to assign units and treatments 
randomly to each other. However a spreadsheet provides a good way of randomising 
the experiment.

A completely randomised design (see Chapter 5)
Suppose the experiment is to have two treatments A and B with six animals per treat-
ment in a completely randomised design. The animal numbers 1 to 12 could be put in 
the first column. Six As and six Bs are put in column two and a random number is put 

Table 3.2 Randomisation of a completely randomised design using EXCEL. (1)

ID Treatment Rand.No
Treatment 

randomised Rand No. sorted

 1 A 0.573 B 0.010

 2 A 0.440 B 0.016

 3 A 0.096 A 0.096

 4 A 0.140 B 0.114

 5 A 0.368 A 0.140

 6 A 0.806 B 0.196

 7 B 0.010 B 0.222

 8 B 0.016 A 0.368

 9 B 0.222 A 0.440

10 B 0.996 A 0.573

11 B 0.196 A 0.806

12 B 0.114 B 0.996

(1) Assuming treatments A and B are to be assigned at random to animals 1–12 using EXCEL. 

Columns 2 and 3 should be marked and sorted on column 3 to give the random order shown in 

column 4. Random numbers only shown to three decimal places.
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in column 3 using the cell formula”=RAND()’ (case independent). These random 
numbers could be copied and pasted back as values (although this is not strictly necessary). 
Then columns two and three are sorted on column three. This will put column two into a 
random order. The spreadsheet before and after the sorting is shown in Table 3.2.

A factorial design (see Chapter 6)
A 2 × 2 factorial design with, say, two treatments 1 and 2 and both sexes, F and 
M will have four treatment combinations: F1, F2, M1, M2. If there are to be three 
experimental units per treatment combination, then column one will have the 
numbers 1–12, column 2 will have F1, F2, M1, M2, three times and column 3 will 
have 12 random numbers, columns 2 and 3 should then be sorted on column 3.

A randomised block design (see Chapter 7)
In this design the experiment is split up into several ‘mini-experiments’, each with 
one experimental unit per treatment. Each block is randomised separately. So using 
EXCEL in the above factorial experiment there will be four blocks designated 1, 2, 
3, 4 each with the four F1, F2, M1, M2 treatments. Randomisation is then done by 
sorting firstly by the random number column and then by the block column. The 
result is shown in Table 3.3. The treatments are now in random order in each block.

Table 3.3 Example showing randomisation of a randomised block design using 
EXCEL assuming four treatments M1, M2, F1, F2 and four blocks. Treatments are 
now in random order.

Treatment Block Rnum Animal

M1 1 0.012198  1

M2 1 0.193397  2

F1 1 0.339560  3

F2 1 0.856625  4

F2 2 0.105376  5

M1 2 0.125236  6

F1 2 0.603448  7

M2 2 0.859552  8

M2 3 0.017276  9

F2 3 0.175645 10

M1 3 0.177146 11

F1 3 0.737313 12

F1 4 0.126645 13

F2 4 0.719067 14

M2 4 0.817535 15

M1 4 0.927656 16

Treatments were initially entered as four M1s, four F1s, four M2s, etc. and the block as 1, 2, 3, 4 four 

times. Treatments were then sorted first by the random number column (Rnum) and second by the 

Block column. Each block now has one animal of each treatment in random order in each block.

03_FESTING_Ch 03.indd   32 15-Apr-16   10:05:29 AM



Understanding and controlling variation  33

Improving the randomisation
In small experiments randomisation may not always be satisfactory. By chance all of 
one treatment group may be located in, say, the first half of the experiment. In this 
case re-randomisation is acceptable (press F9 in EXCEL to update random numbers, 
and then re-sort the EXCEL sheet). A better alternative would be to use a randomised 
block design (see Chapter 7).

Some people advocate ‘improving’ on the random allocation of animals to the 
treatment groups by moving animals from one group to another so as to have exactly 
the same mean body weight in each group before starting the experiment. The prob-
lem with this approach is that by minimising the mean differences between the 
groups, the variation within groups is increased. This may result in a reduction in the 
power of the experiment. If body weight in the available animals is quite variable, 
then a randomised block design should be considered, with blocking on body weight.

Blinding
When the outcome is being assessed, the person doing the assessment or measure-
ment should not know which treatment was performed on the experimental unit 
being measured. Failure to blind can lead to one treatment group being favoured 
either intentionally or unconsciously, giving a biased result. If the above methods 
of randomisation are used then following the treatment the cages or experimental 
units should only be identified by a number. This will ensure that the investigator is 
blinded to the treatment at the time that the outcome is measured.
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Introduction to the analysis of variance  
(ANOVA)

Despite its name, the ANOVA is a method for comparing means, not variances. 
According to Fisher, who developed the ANOVA:

The arithmetical discussion by which the experiment is to be interpreted is 
known as the analysis of variance. This is a simple arithmetical procedure, by 
means of which the results may be arranged and presented in a single com-
pact table which shows both the structure of the experiment and the relevant 
results, in such a way as to facilitate the necessary tests of their significance. 
(Fisher, 1960)

The ANOVA can be used for simple experiments such as those comparing the means 
of two groups (in which case it gives identical results to Student’s t-tests), as well 
as to more complex designs such as randomised blocks, and factorial designs. It is 
essential for anyone using experimental animals to have a basic understanding of this 
powerful technique because it is the only sensible method for analysing the majority 
of experiments.

One-way ANOVA
An example of a simple one-way ANOVA table is shown in Table 4.1 (using data from 
the example in Chapter 5) and diagrammatically in Figure 4.1. The column headed 
‘Source’ indicates the source of the variation, which in this case consists of ‘Treatment’, 
‘Residuals’ and ‘Total’. Other or slightly different labels may be used depending on 
the software package (e.g. ‘Residuals’ may be labelled ‘Error’, and R and Rcmdr do 
not label the first column or show the ‘Total’ row). In a two-way ANOVA, additional 
sources of variation such as gender, blocks, rows and columns (say in a Latin square 
design) and covariates (in the analysis of covariance) may be present.

In the one-way ANOVA table (Table 4.1) DF stands for the ‘degrees of freedom’ 
in the experiment. This is defined as ‘the sample size, n, minus the number of parame-
ters, p, estimated from the data’ Crawley, 2005). The variance of a sample of size n is 
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the sum of squared deviations of each observation from the mean divided by n − 1. In 
order to estimate this, one parameter (the sample mean) must first be calculated. Hence 
the DF is n – 1. Thus in this experiment the total number of independent observations 
available to estimate the overall variance is n − 1 = 26. As there are three groups the 
DF associated with the differences among group means is 3 – 1. Finally, the residual 
DF is obtained by the difference between the total and the treatment DF: 26 − 2 = 24.

The column headed ‘SS’ gives the sum of the squared deviations from the respec-
tive means. These deviations quantify the variation associated with each source. It is 
possible to express the treatment as a percent of the total variation (in this case 52%). 
These SSs are converted to the mean squares (MSs) by dividing them by the DF.

The ‘Residual’ or ‘Error’ mean square is of particular importance because it is an 
estimate of the pooled within-group variance. So the square root of this is the pooled 
standard deviation (SD).

The column headed F-value shows the ‘variance ratio’ statistic, being the treat-
ment MS divided by the residual (error) MS. It is designated as ‘F’ in honour of 
Fisher. Before computers were available the F-values were looked up in tables 
according to the error and treatment DF to determine the P-values. However, this 
is now done by computers. The P-value (0.00014) in the ANOVA table gives the 
probability that a difference in means as great as or greater than that observed could 
have arisen as a result of chance sampling variation when there is no true difference 
between groups (i.e. the null hypothesis of no differences among means is true). By 
convention, a difference among means with a P-value of >0.05 is often considered to 
be ‘not significant’, one of P < 0.05 is considered ‘significant’ and one of P < 0.01 is 
‘highly significant’. However, these cut-off points are entirely arbitrary, dating back 
to the time when exact P-values could not be calculated. It is important to quote the 
actual P-value rather than to just state whether it is less than or greater than 0.05, thus 
allowing readers to make up their own mind on how to interpret the result. Phrases 
such as ‘borderline significance’ should be avoided.

A P-value of 0.06 does not mean that the treatment has had no effect. It might just 
be that the experiment was too small or the variation among individuals too great to 
be able to detect an effect. Absence of evidence is not evidence of absence. When 
there are more than two treatments the ANOVA only gives an indication of whether 
overall the means are different. Further calculations are needed to determine which 
of these means differ. This is often done using post hoc comparisons.

Table 4.1 Example of an analysis of variance table. (1)

Source DF SS MS F-value P-value

Treatment  2 2861 1430.5 13.13 0.00014

Residuals 24 2614  108.9

Total 26 5475

DF: degrees of freedom, SS: sum of the squared deviations, MS: mean squares.

(1) The headings in all tabular output from Rcmdr has been edited to conform to that found in 

most other packages and textbooks.

04_FESTING_Ch 04.indd   35 4/15/2016   12:52:44 PM



36  The design of animal experiments

Two-way ANOVA
In an experiment the ‘factors’ (often called, in a wider context, explanatory varia-
bles) can either be fixed or random effects, as discussed in Chapter 2. The one-way 
ANOVA has a single fixed effect factor, the ‘treatment’. By contrast, a randomised 
block design, in which the experiment is split up into a number of mini-experiments 
(see Chapter 7), has one or more fixed effects (the treatments) as well as a random 
effect (the block). So the ANOVA table has an additional row called ‘Blocks’. A 
Latin square design will have two random effect factors often designated as ‘Rows’ 
and ‘Columns’ as well as one or more fixed effect factors. A factorial experiment has 
two or more fixed effect factors such as ‘treatments’, ‘gender’ and/or ‘strain’. It will 
also have some interactions such as ‘treatment × gender’ which will indicate whether 
males and females respond in the same way to the treatments. Examples of these 
types of experiments and the associated ANOVA tables are given in later chapters.

Assumptions about the data when using  
an ANOVA
The validity of the ANOVA depends on three assumptions, which should normally be 
examined as part of the statistical analysis, as is done in most of the examples given 
in later chapters.

1. The observations are statistically independent of one another. This assump-
tion depends on correct identification of the experimental unit as discussed in 
Chapter 1, and correct randomisation.

2. The residuals (i.e. the deviation of each observation from its group mean, see 
Figure 4.1) should have a normal distribution (bell-shaped). This is often the 
case, but with some types of data this assumption may be seriously violated, in 
which case either the data need to be transformed to another scale (see below) or 
a non-parametric test (which is based on ranks instead of the observed data) needs 
to be used. The ANOVA is quite tolerant of small deviations from this assumption.

3. The variances within each group should be approximately equal (homoge-
neous). Again, a scale transformation may also be appropriate if this assumption 
is seriously violated.

Treatment 1 mean

Treatment 1 deviation

Individual deviation

Over-all mean

Treatment 2 mean

Figure 4.1 Treatment and individual deviations from the overall mean. The treatment 
sum of squares is the sum of the squared deviations from the overall mean and the 
error sum of squares is the sum of the squared deviations of each observation from its 
treatment mean. Jitter has been added so that the points are separated horizontally.
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Assumptions 2 and 3 can be examined using residual diagnostic plots which are 
introduced in Chapter 5.

Scale transformations
A scale transformation may sometimes be used to make the data satisfy the 
assumptions for a statistical analysis using the ANOVA. The three most common 
transformations are:

1. The logarithmic transformation – If the data are skewed with a long tail of high 
numbers or if the variability increases with larger values of the dependent vari-
able then transforming the data to log(x) can be used. If there are any zero or 
negative numbers in the observations, a value should be added that makes them 
larger than zero because the logarithm is undefined for values ≤0.

2. The square root transformation – Counts, with a low mean (resembling a Poisson 
distribution) will usually have heterogeneous variances. Observations can be 
transformed to the square root of the counts (√(x)) as this exaggerates differences 
among low values and deflates differences among higher values.

3. With percentage data an arcsine transformation is appropriate for percentage 
data when many of the observations are <20% or >80%. This is sin−1 × √ (0.01 × p) 
where p is the percentage. The calculations can be done in EXCEL.

If none of these transformations work, an alternative is to rank all the data and then 
perform an ANOVA on these ranks (Montgomery, 1997).

Note that a more general approach would be to use generalised linear models 
(GLMs) for data that are unlikely to be directly suitable for an ANOVA (Crawley, 
2005). However, most data from designed biological experiments can be analysed 
using an ANOVA.

On the rare occasions when there is no suitable transformation an alternative 
is to use a non-parametric test. These are not discussed here, but are covered in 
most statistical texts or specialised monographs. Their main disadvantage is that they 
may lack power and they are not available for complex designs such as factorial 
experiments.

Comparisons of treatment group means  
following the ANOVA
When more than two treatments are being compared, the ANOVA indicates whether 
there is a significant overall difference among them, but not which ones differ.

There are two main ways of making such comparisons. The first is to plan exactly 
which comparisons are of interest, and to use an appropriate set of what are called 
‘orthogonal comparisons’. This is a fairly flexible method which can be used, for 
example, to study different comparisons of treatment means. The method can also 
determine whether there is a linear and/or curved trend in the response to the dose 
levels of a compound. Unfortunately, the methods are only supported by the more 
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advanced statistical packages; and although the calculations are not difficult, and can 
be done by hand, it is not always easy to understand from the textbooks on how they 
are done. More details are given elsewhere (Altman, 1982; Crawley, 2005; Snedecor 
and Cochran, 1980).

The more common and easier alternative is to use post hoc (‘after the event’) 
comparisons of treatment means. These are available in most statistical packages. 
They work on the premise that the more statistical tests that are done on the same set 
of data, the greater the risk that at least one of these tests will be significant purely by 
chance (a false-positive result). Post hoc tests control this risk. However, they should 
only be used if the ANOVA indicates that there are statistically significant overall 
differences among the groups.

Post hoc comparisons
The following tests are commonly used:

1. Dunnett’s test is appropriate for comparing several dose groups with a control 
group (R-Commander (Rcmdr) automatically compares the first group, iden-
tified alphabetically by treatment name, with all other groups. So treatments 
could be named ‘A.control’, ‘B.Apples’, ‘C.Pears’, etc. if this test is to be used).

2. Methods for comparing several treatments include Fisher’s least significant 
difference (LSD), Scheffe’s test, Duncan’s multiple range test, Neuman–Keuls’ 
test, and Tukey’s test. This last test is used by Rcmdr. These differ slightly. It 
is suggested that investigators should use the ones available on the statistical 
software which they are using.

3. Bonferroni’s method can be used for making a small subset of treatment compar-
isons with the P-value for each treatment comparison being declared significant 
if it is less than α/k, where α is the chosen significance level (say 0.05) and k is 
the number of pair-wise treatment comparisons. This method is very conserva-
tive and can lead to too many false-negative results if k is large.

4. In situations where there are many comparisons, such as in a microarray anal-
ysis, a false discovery rate method is used (Pawitan et al., 2005), but this is not 
discussed here.

In general, experiments should be designed to test relatively simple hypotheses, and 
large numbers of post hoc comparisons should be avoided.

Internal and external validity
The concepts of ‘internal’ and ‘external’ validity are to do with the generality of 
the results which are produced. The internal validity of an experiment is concerned 
with whether the design is appropriate to answer a specific question. By contrast, 
external validity is concerned with whether the results are likely to be general across 
a range of other conditions. When designing an experiment it is often sensible to 
consider trying to increase the external validity of the results as this can often be 

04_FESTING_Ch 04.indd   38 4/15/2016   12:52:46 PM



The analysis of variance  39

achieved at little extra cost by using factorial and randomised block designs which 
sample different environments and treatments. It could, for example, be useful to 
know whether the results depend on the gender or strain of the animals which are to 
be used. This is done by including both genders and/or more than one strain in the 
experiment using a factorial design.

Choice of an experimental design

The range of available designs
Table 4.2 summarises some of the more common experimental designs used in biol-
ogy. These include the following six designs.

The completely randomised (CR) single factor design
This is the design most widely used both in clinical trials and in experiments with 
laboratory animals with a single factor, namely the ‘treatment’. There can be any 
number of treatments such as differing dose levels, genotypes or diets. One of the 
treatments may be designated as the ‘control’. However, the design is not very effi-
cient. It may lack power due to poor control of inter-individual variability; and it may 
be subject to bias due to faulty or unlucky randomisation, particularly with small 
experiments. In most cases when using laboratory animals a randomised block (RB) 
design would be a better choice.

Randomised block and Latin square designs
These can reduce some sources of variation found in CR designs. This is done 
by choosing subsets of experimental units either matched for some physical 
characteristics or grouped in time. Typically, these subsets (called blocks) are 
mini-experiments and have one experimental unit per treatment. Randomisation is 
done separately within each block. These designs can often take account of some 
natural structure of the experimental material such as litters, using a within-litter 
design. Within-animal and crossover designs where the experimental unit is a part 
of an animal or an animal for a period of time are also blocked designs, with the 
individual animals being the block.

Factorial ‘designs’
Strictly, these are not ‘designs’. They are an arrangement of treatments. True designs 
such as CR and RB designs are mutually exclusive. It is not possible to have an 
experiment which is both an RB and a CR design. However both CR and RB designs 
can have a factorial arrangement of treatments (with two or more fixed effect factors).

The US National Institutes of Health (NIH) now requires scientists to use animals 
(and even cell lines) of both sexes in their experiments. This can usually be done 
quite simply in either a CR or an RB design by using half males and half females 
without increasing the total number of animals. So in addition to the factor ‘treatment’, 
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there is another factor ‘gender’. The result is a ‘factorial’ experiment with two fac-
tors, treatment and gender. This principle of splitting the available material to add 
extra factors could be extended to include two or more strains, two or more diets, 
etc. The main limitation is that the experiment should not be too large to handle and 
it should have sufficient DF in the resulting multi-way ANOVA to obtain a good 
estimate of error. These designs show the effects of each factor separately, as well 
as their joint effects (interaction). If males and females differ in their response to the 
treatments, this would be an ‘interaction’. Advanced versions of factorial designs can 
be used, for example, to find the optimum combination of a large number of factors. 
For a given input of resources (animals, reagents, time, etc.), factorial designs will 
normally provide more information than a single factor design, at little or no extra 
cost. These designs are discussed in Chapter 6.

Repeated measures designs
There is some confusion in the literature on the definition of a ‘repeated measures’ 
design. Some statisticians have used this term for what others call a ‘crossover’ 
design in which the experimental unit is an animal for a period of time, and the 
animal receives different treatments over time. Mathematically this is really an RB 
design with the animal being the block (see Chapter 7). Other investigators use the 
term for an experiment where the same individual is measured several times without 
receiving a different treatment. In this case the statistical analysis is controversial. 
Here it is suggested that the observations are combined into either a mean response, 
a trend in response, time to peak response, or the area under a curve (see Chapter 8).

Split plot designs
Currently, these designs (see Chapter 8) are rare but could become more common 
in work with laboratory animals following the requirement by the NIH to use both 
sexes in an experiment. They could be the natural design in situations where animals 
with different treatments or conditions (such as genetically modified animals with 
different modifications) can be kept in the same cage. So the animal is the experi-
mental unit and the cage represents a block of an RB design. However, in order to 
include both sexes half the cages could be male and half female. So for comparing 
males and females the cage becomes the experimental unit but for comparing treat-
ments (or genotypes) the animal is the experimental unit. These designs are usually 
defined as an RB design in which blocks are confounded with a fixed effect factor.

Sequential designs
In most experiments the sample size is determined before starting the experiment. 
However, if the response is much larger than expected the sample sizes may be 
unnecessarily large, so subjects will be wasted. Conversely, if the response is lower 
than expected it may be missed. In the sequential design sample size is determined 
as the experiment progresses. Consider a simple experiment such as whether surgi-
cal treatment A is ‘better’ in some way than treatment B. The first pair of animals is 
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treated. In the absence of a real difference there will be a 50% chance that A appears 
to be better than B. With the second pair the chance that A is better than B both times 
will be 1/2 × 1/2 = 0.25. By the time that the sixth pair is processed the probability 
that A appears better than B every time when in fact there is no difference is 1/64 = 
0.016. It might be decided to stop at this stage and claim that A is significantly better 
than B. But that is the simplest situation. If treatment A is only a little bit better than 
B, the outcome may not be so clear cut. A detailed consideration of these designs is 
beyond the scope of this book, and a useful source of further information is given in 
http://www.sumo.intec.ugent.be/SED (accessed December 2015).

Experiments versus surveys

Experiments investigate whether an independent variable causes changes in a 
dependent variable. By contrast a survey gathers information about processes which 
cannot be controlled by the investigator. In a survey, the variable of interest, such as 
level of smoking, cannot be deliberately varied, and inferences about its effects on 
health in a population can only be based on associations or correlations, but not on 
causation. This can lead to spurious findings such as the well-known example of the 
strong correlation between the number of storks in German towns and the birth rate: 
larger towns have more humans, and more chimneys for storks to nest on, but more 
storks do not cause more babies.

04_FESTING_Ch 04.indd   43 4/15/2016   12:52:46 PM



5
The completely 
randomised single  
factor design

Introduction

The completely randomised (CR) design is relatively simple and is widely used in 
clinical trials and laboratory animal research. A strong case can be made for the more 
widespread use of the randomised block (RB) design in laboratory animal research 
as it is usually more powerful and less liable to bias through faulty or unlucky 
randomisation.

In the CR design experimental units are allocated to treatments completely at 
random. There is a single factor the ‘treatment’, which can have any number of levels 
and there can be any number of replicates (sample sizes) per treatment group. Group 
numbers may be equal or unequal. However, if there are several treatments, each of 
which will be compared with the control group, then the sample size in the controls 
might be increased. The design can also have a factorial layout with two or more 
fixed effect factors, as discussed separately in Chapter 6.

This design is easy to use, it is relatively unaffected by unequal numbers in 
each treatment group, and it is easy to analyse. However, a CR design does not take 
account of any identifiable variability among the experimental units (e.g. due to litter 
effects) and will be inefficient if the experimental material or the environment during 
the experiment is heterogeneous. It may not be a good design with large experiments 
because measurements may need to be made over an extended time period, and large 
numbers of similar experimental units and a large uniform environment may be 
difficult to find.

A fictitious example

Does jogging improve memory? Suppose that the aim is to test the hypothesis that 
running has an effect on learning and memory. Contrary to the old belief that the 
number of neurons can only decrease after birth, it is now known that new neurons 
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can be added to the adult brain. In some bird species, the part of the brain associated 
with singing grows during the breeding season, and shrinks after that (Tramontin 
and Brenwitz, 2000). In mice, exposure to an enriched environment increases the 
production of new neurons (neurogenesis) in some parts of the brain (Kempermann 
et al., 1997) and so does general physical activity.

Suppose, therefore, that an experiment is planned to test whether physical activity 
(e.g. wheel running) enhances learning ability and memory in mice. How should it be 
designed? This depends on the questions being asked, i.e. what should be measured, 
and how much additional (‘nuisance’) variation is likely to be caused by, say, sex, 
genotype or weight and which may mask the treatment effects. Are there interactions 
between the independent variables that are used? The first point about design is that 
the experimenters must be very clear about the hypotheses to be tested, but also be 
aware of variables which may alter the conclusions.

In this example, three levels of running might be chosen:

1. No running (a non-rotating wheel is placed in the cage, say for 30 min each day).
2. Moderate running (mice are allowed access to a running wheel for 30 min per 24 h).
3. Marathon running (access for 3 h per 24 h).

These treatments are to last for three weeks before the mice are tested for learning 
ability in a maze. There are many ways that learning ability can be measured in prac-
tice. For simplicity, the response is designated ‘learning ability’ without detailing the 
specific measure that was used to determine it. Low values represent good learning 
ability (indicated by a short response time).

Formally, the hypotheses of interest are:

 • H0 (the null hypothesis): all mean learning scores are equal (i.e. there is no effect 
of running activity on learning ability).

 • H1 (the alternative hypothesis): at least one mean differs from the rest (i.e. run-
ning has some effect).

The data comprise nine observations for each running treatment, and are shown in 
Table 5.1. Note that the treatments should be assigned to the animals at random, 
using EXCEL as described earlier, and the cages should be distributed in the animal 
house in order of cage number, not treatment. As the treatments are to last for five 
days a week for three weeks it might be advisable to use coloured labels to identify 
which animals have which treatments during the treatment stage. However, once the 
treatment regime is completed those labels should be removed, leaving only animal 
numbers during the assessment of the final learning scores so that the investigators 
doing the scoring are blinded to the treatment.

There are two kinds of variation: between- and within-running regimes. The for-
mer refers to the deviation of the treatment mean levels from the grand (overall) 
mean. This will be large if there is a treatment effect. The deviation of each observa-
tion from its corresponding treatment mean (‘noise’) is assumed to be approximately 
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46  The design of animal experiments

the same in each group. If the null hypothesis is false, the ratio of between to within 
variances should be large: this ratio is the F-value from the analysis of variance 
(ANOVA) table.

Data analysis
The raw data in randomised order is given in Table 5.1. The statistical analysis is 
done using R-Commander (Rcmdr) (see Appendix 1) which can be used to analyse 
all the examples in this book. Most other commercial packages such as MINITAB 
and SPSS will also do these calculations, although some of the lower-end packages 
will not perform a three-way ANOVA, which is required for some of the analyses in 
Chapter 6 and later.

Importing the data into Rcmdr and graphical  
screening the data for obvious errors
The data are read from EXCEL into Rcmdr via the clipboard (Data, import data, 
from clipboard). The default name ‘Dataset’ is given but can be altered if more than 
one set of data is to be analysed.

It is always good practice to plot the data to show individual observations. Any 
outliers can be checked for errors. Rcmdr provides a ‘stripchart’ for this purpose 
(Graphs, Stripchart). Jitter can be added so that there is less chance that the points 
fall on top of each other. The resulting plot is shown in Figure 5.1. In this case there 
are no obvious points that need to be checked and the variation seems to be about the 
same in each group.

Box and whisker plots (Graphs, boxplot) will also show outliers if they exist and 
may pick up other abnormalities. The bar across the box is set at the median. The 
box covers the interquartile range the whiskers show the maximum and minimum 

Table 5.1  Raw data for the running experiment.

Animal Group Score Animal Group Score Animal Group Score

1 B 212 10 C 232 19 A 250

2 A 238 11 C 218 20 C 229

3 A 259 12 C 212 21 B 228

4 B 216 13 A 246 22 A 230

5 A 258 14 B 227 23 C 233

6 C 219 15 C 205 24 B 242

7 B 221 16 A 251 25 B 241

8 C 218 17 C 230 26 B 229

9 B 238 18 A 252 27 A 231

Note that the data are still in a random order. It is split over three columns for presentation. 

Group A = None, Group B = Moderate, Group C = Marathon running.
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Figure 5.1 A stripchart of learning scores. Jitter has been added so that the points 
are separated. A plot of individual points, as above, can show any obvious outliers 
and give a general impression of the distribution of the data. The term ‘stripchart’ 
is used by R-Commander for a plot where the X-axis is a discrete factor. This is in 
contrast to a ‘scatterplot’ where both X and Y axes are continuous variables.
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Figure 5.2 Box and whisker plot of the learning data. A = None, B = Moderate, 
C = Marathon running. Note that the box covers the interquartile range which 
includes half the numbers. The horizontal line is at the median. The whiskers 
show the maximum and minimum values, respectively. The results in this case are 
unusual with the median bar close to the interquartile edge of the boxes in both 
groups A and C. This implies some bunching at the top and bottom.
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Figure 5.3 Plot of means with 95% confidence intervals. There is clearly a large 
response.

values. Any points considered to be outliers are shown as asterisks. In this case (see 
Figure 5.2) there are no outliers, but in groups A and C the median is quite near the 
edge of the box. There seems to be some bunching of the results in the ‘None’ and 
‘Marathon’ treatment groups. This hypothetical example does not say how learning 
was measured but this sort of result could be observed if many animals either learned 
or did not learn, with just a few of them half-learning the task. Learning score might 
be an average of several runs in a maze, for example.

A plot of means (see Figure 5.3) with confidence intervals or other bars is also easily 
generated (Graphs, plot of means). Clearly there is good evidence of a treatment effect.

A range of other statistics such as means and standard deviations (SDs) in each 
group are also available.

ANOVA and post hoc comparisons

The data can be statistically analysed in Rcmdr using statistics, means, one-way 
ANOVA, with the results shown in Table 5.2. There are highly significant differences 
between group means. If the pairwise comparison box is ticked, then post hoc compar-
isons will be generated using Tukey’s method to account for multiple testing. These 
can also be shown as a plot (Figure 5.4). This shows group A differs from groups B 
and C (P < 0.05), but these latter two groups do not differ (P > 0.05). Group means and 
SDs are shown in Table 5.3. These analyses again show that the two running groups differ  
significantly (P < 0.05) from the controls, but Moderate does not differ significantly 
from Marathon. An alternative, more general, way of performing an ANOVA in 
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Table 5.2 ANOVA table for the running data as produced by R-Commander 
(Rcmdr). Summary (AnovaModel.1).

DF SS MS F-value P-value (>F)

Group  2 2861 1430.5 13.13 0.00014***

Residuals 24 2614  108.9

Note that Rcmdr does not label the first column ‘Source’, nor does it include a row of totals 

as in many other statistical packages. Also the headings (SS, MS etc) have been altered to 

conform to the more usual output from a statistical package. DF: degrees of freedom, SS: sum 

of squared deviations, MS: mean squares.

***indicates statistical significance at p<0.001

Table 5.3 Group means and standard deviations (SDs).

Treatment Mean SD Significance1

A 246 10.8 a

B 228 10.7 b

C 221  9.8 b

Pooled SD 10.4 

These have been expressed to three significant digits. n = 9 in each case. 1Means with the same 

letters are not significantly different (P > 0.05).

−30 −20 −10 0

C − B

C − A

B − A

95% family-wise con�dence level

Linear Function

( (

( (

( (

Figure 5.4 Post hoc comparisons using Tukey’s method of correcting for multiple 
testing. Both groups B and C differ from group A, but groups B and C do not differ 
at the 5% level of probability.

Rcmdr is discussed in Chapter 6. This will carry out the equivalent of Dunnett’s test, 
comparing each group with the first group (determined alphabetically).
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Another statistic that may be useful is the observed standardised effect size 
(SES). This is the response in SD units. In this case for Group B it is (246 − 228)/ 
√ 108.9 = 1.72, i.e. the difference between the means divided by the pooled SD (the 
square root of the residual mean square). For group C it is 2.30. Prospective SESs are 
used in estimating sample sizes, discussed in Chapter 8.

Assumptions for a valid ANOVA

As described in chapter 4, the ANOVA relies on the assumptions of (1) independent 
observations – this depends on the correct identification of the experimental unit (a 
mouse) and correct randomisation; (2) normality of the residuals; and (3) homogeneity 
of the variance. The last two of these can be assessed using ‘residual model diagnostic 
plots’. These are found in Rcmdr under Models, Graphs, Basic diagnostic plots.

The resulting plots are shown in Figure 5.5 (only the top two plots are dis-
cussed). The top left-hand plot of the Residuals versus Fitted values is designed to 
show any heterogeneity of variation among the groups. It should show a random 
scattering of values around zero, with no obvious systematic patterns across the 
range of fitted values as is the case here. Thus, there is no evidence of heteroge-
neity of the variances. Bartlett’s or Levene’s test (Statistics, variances) can also 
be used for the same purpose although they tend to be over sensitive (see below). 
The most common deviation is when large things vary more than small things. In 
that case the scattering of points on the left of the plot would be less than on the 
right (which is not the case here). In extreme cases a transformation of scale may 
be necessary.

The Q–Q plot (second top) should show a straight line if the residuals have a nor-
mal, bell-shaped distribution. In this case there is a slight S-shaped line. Apparently, 
there is an excess of animals which are poor learners, and an excess of animals which 
are fast learners, with relatively few animals which are intermediate learners. Thus 
there are slightly heavy tails to the normal distribution. Although these plots show 
some deviation from the required assumptions for a valid ANOVA, the deviation is 
probably not sufficient to invalidate the conclusions. The ANOVA is quite robust 
against deviations from the assumptions. An example where the assumptions are 
clearly not met and a scale transformation is needed is discussed in Chapter 6. The 
interpretation of these diagnostic plots requires some experience.

A criticism of this experiment

The data in this example are fictitious but they serve to show how such an experi-
ment can be summarised (with means, SDs and confidence intervals) and analysed 
using an ANOVA.

An experiment needs to take account of the biology of the species, the logistics 
of the way that it is to be conducted, and whether it makes economical use of the 
available resources.
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There are two possible problems with this experiment. First, it may not make 
good use of the experimental material, and second there could be logistical diffi-
culties in carrying it out. The mice need to be individually housed, which will have 
welfare consequences. Will the exercise wheels fit in a standard cage? Will the 
wheels need a counting mechanism to assess how much they are used? There is wide 
inter-individual and strain variation in the use of exercise wheels (Festing, 1976). Is 
it going to be expensive to have separate wheels for 27 individual cages? Then there 
is the logistics of putting the wheels into the cages and taking them out again after 
30 min or 3 h. How easy will that be with 27 cages over a period of three weeks? 
Another problem is that mice are nocturnal. Is it reasonable to put the wheels into 
the cages during the day in their sleep period? Would it be more sensible to change 
the lighting so that it comes on at, say, 04:00 h and goes off at 13:00 h. At that point 
the room could be lit by dim red light so that staff could see where to put in and 
remove the exercise wheels.

Assessing learning ability in a maze may also introduce logistical problems. How 
easy is it to assess learning ability in 27 mice? If each mouse took one-quarter of 
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Figure 5.5 Residuals model diagnostic plot of the learning data. Note that in 
the first plot there is a good scattering of points in all four corners, so there is no 
evidence of heterogeneity of variance. The slight S-shaped distribution in the second 
plot indicates some deviation from a normal distribution of the residuals, as is also 
shown in the box plots.
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an hour to assess, that would require nearly 7 h. Would it all be done in one day? If 
so, will there be biological rhythms that affect mice differently in the morning and 
afternoon? Would the work need to be staggered in some way? If so, how? Given that 
mice are nocturnal, will they be tested in the daytime?

All these factors suggest that it might be better to split the experiment up as a 
Randomised Block design (see Chapter 7) over a period of time. True, the experi-
ment would take more time to complete, but it would provide better control of the 
variability and would therefore be more powerful, and some idea of repeatability 
could be obtained from the individual blocks. It would also need fewer cages and 
exercise wheels, which might save some money.

Moreover, the experiment does not make efficient use of the animals. Methods 
of determining sample size are discussed in Chapter 11. The ‘resource equation’ 
method states that an experiment analysed using an ANOVA should usually have 
between 10 and 20 degrees of freedom (DF) for the error term. Fewer than 10 DF 
implies that the experiment will lack power and more than 20 implies either that the 
experiment may be excessively large or it is asking too few questions. This experi-
ment is quite large with 24 DF for error. There is scope to ask more questions. For 
example, it could include both males and females at no extra cost using a factorial 
experimental design, the topic of the next chapter.

In conclusion, careful thought would need to be given to the logistics of this 
experiment and to whether it would have been possible to obtain more information, 
by including both sexes or more than one strain of mice.
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Factorial experiments

Introduction

Factorial experiments provide one of the best ways of implementing ‘Reduction’ as 
defined by (Russell and Burch, 1959). According to Fisher (1960):

[By using a factorial design] … an experimental investigation, at the same 
time as it is made more comprehensive, may also be made more efficient, if 
by more efficient we mean that more knowledge and a higher degree of pre-
cision are obtainable by the same number of observations.

A ‘factor’ is a discrete variable used for classification purposes such as gender, treat-
ment, strain, age (young or old), etc. A factorial experiment is one which has at least 
two fixed effect factors, each of which can have any number of levels. For example 
gender could be a factor with levels male and female; strain could be a factor with 
levels Strain A, B, C, etc.; and age could be a factor with levels young and old. 
Factors can also be numerical with, for example, dose levels 0, 5, 10 mg/kg.

The aims of a factorial experiment are usually:

1. To investigate the effect of each treatment separately on the dependent variable.
2. To assess whether there are interactions between the factors, i.e. whether the 

magnitude of response to one factor depends on the level of another factor.

Strictly, factorial designs are an arrangement of treatments rather than a ‘study 
design’, but they are commonly called ‘designs’. True designs are mutually exclu-
sive. It is not possible to have a completely randomised (CR) design which is also a 
randomised block (RB) design. However, CR designs, RB designs and several other 
designs can have factorial arrangements of treatments.

The fictitious experiment discussed in Chapter 5 to determine the effect of wheel 
running on learning ability in mice was technically correct and provided a valid 
introduction to CR designs, but it was open to criticism on two grounds.

1. It made inefficient use of animals (and other resources) because it only involved 
a single fixed effect factor, the three levels of wheel running.

2. The logistics of assessing learning ability in 27 mice in a short period (to avoid 
too much variation due to circadian rhythms) could be a problem, leading to 
increased inter-individual variation and a reduction in statistical power.
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54  The design of animal experiments

This chapter deals with the first and Chapter 7 addresses the second of these two 
criticisms. The experiment involved three treatment groups (None, Moderate and 
Marathon running) with nine mice per group. An experiment of this size could easily 
incorporate both sexes. For example, instead of using nine animals of the same sex in 
each group it could have used four males and four females in each group (one less per 
group in order to have a balanced design). Treatment differences would be estimated 
from the mean across both sexes, with a total of eight animals per treatment. Gender 
differences in learning ability would be assessed by averaging across treatments, and 
any differences in response between the two sexes could also be assessed.

Example 6.1: Statistical analysis of a 2 × 2 
factorial design using R-Commander

Table 6.1 shows the red blood cell (RBC) count (×1012/L) in two mouse strains 
(BALB/c and C57BL/6) when administered chloramphenicol at two dose levels 
(vehicle and 2000 µg/kg). This is a 2 (strains) × 2 (dose levels) factorial experiment 
with four mice in each of the four treatment groups. It is real data extracted from a 
larger CR factorial experiment (Festing et al., 2001) used here to demonstrate the 
statistical analysis using R-Commander (Rcmdr) in a situation where there is no 
interaction. The data are in random order, as if it had been collected in a stand-alone 
experiment. The objectives of the experiment were:

1. To determine the effect of chloramphenicol at this dose level on RBC counts in 
mice, averaged across both strains.

2. To determine whether the two strains differ in RBC counts (averaged across 
chloramphenicol treatments).

3. To determine whether the two strains respond in a similar way to chloramphenicol.

Statistical analysis
To import the data into Rcmdr and prepare it for the analysis, the data (Table 6.1) are 
copied to EXCEL then to the clipboard and read into Rcmdr (Data, import data, from 
textfile, clipboard, click clipboard). The columns show the animal ID numbers, treat-
ment, strain, RBC count and groups. The dose levels are given as 0 and 2000. Rcmdr 
needs to be told that these are factors, not variables. This is done by using the menu 
commands Data, Manage variables in the data set, Convert numerical variables to 
factors. Choose Dose, click ‘Use numbers’ and OK.

Screening the raw data
The raw data are screened visually for obvious errors using a stripchart (Figure 6.1) 
as explained in Chapter 5. Any obvious outliers should be checked to make sure that 
they are not errors, but they should not be altered unless there is clear and unambiguous 
evidence of a mistake.
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Table 6.1 Red blood cell count (RBC) in a 2 (treatments) × 2 (strains) factorial 
experiment.

Animal Treatment Strain RBC Group

 1 B BALB/c 8.45 C

 2 B C57BL/6 8.82 D

 3 A C57BL/6 9.20 B

 4 B BALB/c 8.89 C

 5 A BALB/c 10.08 A

 6 A C57BL/6 9.60 B

 7 B BALB/c 8.68 C

 8 B C57BL/6 8.24 D

 9 A BALB/c 10.09 A

10 A BALB/c 10.10 A

11 B C57BL/6 8.18 D

12 B BALB/c 8.95 C

13 A C57BL/6 9.14 B

14 B C57BL/6 8.10 D

15 A BALB/c 9.73 A

16 A C57BL/6 9.56 B

Treatments have been coded A = control, B = chloramphenicol treated.

a b c d

8.5

9.0

9.5

10.0

Preliminary screen
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C
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Figure 6.1 Stripchart for preliminary screening by group. The Jitter option 
separates the points on the X-axis. Any outliers should be checked to make sure 
that they are correct. Group d has one slight outlier which could be checked to 
ensure that it is not an error (it is not). RBC: red blood cell.
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Table 6.2 Output by R-Commander (Rcmdr) from fitting a linear model (LM) 
analysis to a 2 × 2 factorial experiment.

Call:
LM (formula = RBC ~ Treatment * Strain, data = Dataset)

Residuals: 

Min 1Q Median 3Q Max

-0.29250 -0.19000 0.00875 0.15688 0.48500 

Coefficients:

Estimate Std error t-value P (>|t|)

(Intercept) 10.0000 0.1247 80.221 < 2e-16***

Treatment [T.B] -1.2575 0.1763 -7.133 1.19e-05***

Strain [T.C57BL/6] -0.6250 0.1763 -3.545 0.00403**

Treatment [T.B]:  0.2175 0.2493 0.872 0.40011

Strain [T.C57BL/6]  

Significant codes: ***p<0.001, **p<0.01, *p<0.05

Residual standard error: 0.2493 on 12 degrees of freedom (DF).

Multiple R-squared: 0.8955, adjusted R-squared: 0.8694.

F-statistic: 34.28 on 3 and 12 DF, P-value: 3.643e-06.

1Q and 3Q represent the first and third interquartile range of the numbers. The adjusted R-squared 

is the proportion of the total variation accounted for by fitting the mathematical model.

Carry out an ANOVA with residual plots to check 
assumptions
The Rcmdr commands Statistics, Fit model, Linear model open up an input box. The 
RBC count is the dependent variable. This is double-clicked to put it in the first box. 
The tilde sign ~ means ‘depends on’, so the Treatment, *, and Strain are clicked. 
The asterisk implies factor multiplication (a 2 × 2 design). The Return is clicked and 
Rcmdr gives some results comparing the first group (control, BALB/c) with all the 
other groups (see Table 6.2). This table is slightly complicated but it is useful for 
more complex experiments such as this one.

The linear model output is displayed and some details of the residuals are given 
(Min, IQ, Median, etc., these can be ignored at this stage). The first column of the 
table shows the mean of the first group (BALB/c, controls) which is 10.000 units. 
The effect of chloramphenicol is to reduce this by a statistically significant 1.2575 
units. Changing the strain to C57BL/6 reduces the RBC count by a statistically sig-
nificant 0.625 units. The interaction term increases the value by 0.2175 units which 
is not statistically significant. The residual standard error is 0.2493. This is the same 
as is obtained by taking the square root of the error mean square in an ANOVA 
table. The multiple R-squared of 0.8955 confirms that fitting this linear mathematical 
model accounts for almost 90% of the total variation.

The ANOVA table is obtained from Models, Tests of hypotheses, ANOVA table 
and click ‘Type I’. This provides the ANOVA table (see Table 6.3) in the usual form 
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Table 6.3 Analysis of variance table. Response is red blood cell (RBC) counts.

Source1 DF SS MS F-value P (>F)

Strain  1 1.0661 1.0661 17.1512 0.001367**

Treatment  1 5.2785 5.2785 84.9232 8.60e-07***

Strain:Treatment  1 0.0473 0.0473  0.7611 0.400108

Residuals 12 0.7459 0.0622

Total1 15

1R-Commander (Rcmdr) does not put in the heading ‘Source’ or the ‘Total’ shown here in italics, 

although they are usual in most other statistical packages. Rcmdr uses the convention that 1, 2 

or 3 asterisks are shown to indicate significance levels of p<0.05, p<0.01 and p<.001

The 8.60E-07 means 8.6 with 7 zeros before the 8. DF: degrees of freedom, SS: sum of squared 

deviations, MS: mean squares.

with heading Source not given in Rcmdr, followed by DF, SS, etc. It provides similar 
information to Table 6.2, but in a more familiar style. There are highly significant 
strain and treatment effects but the Strain * Treatment P-value is only 0.4. Therefore, 
although the strains differ in RBC counts and the counts are reduced by the chlo-
ramphenicol, there is no evidence that the response to chloramphenicol at this dose 
depends on the strain of mice.

Calculate the means
The treatment means averaged across strains and the strain means averaged across 
treatments can be calculated using Statistics, Summaries, Numerical summaries 
(see results in Table 6.4). When presenting the means it is better to use the pooled 
standard deviation (SD). This is easily justified because the statistical analysis 
assumes that the variation is the same in each group, and this is checked as part of 
the statistical analysis.

Residual diagnostic plots
The residual diagnostic plots discussed in Chapter 5 can be obtained in Rcmdr from 
Models, Graphs, Basic diagnostic plots (Figure 6.2). The first plot of Residuals ver-
sus Fitted should have a scattering of points with no obvious pattern. Animal No. 2 

Table 6.4 Treatment and strain means.

Strain Control Treated Strain means

BALB/c 10.00 8.74 9.37

C57BL  9.38 8.34 8.86

Treatment means  9.69 8.54

Pooled standard deviation (SD) = 0.25. Both strain and treatment means are significantly differ-

ent (P < 0.01) but the interaction is not significant.
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is identified as a slight outlier but there is no evidence of heterogeneity of variances. 
The Normal Q–Q plot should show approximately a straight line (as in Figure 6.2) 
if the residuals have a normal distribution. The remaining two plots offer a more 
detailed analysis of the residuals, but they are not discussed here. The interpretation 
of these plots needs some experience as it is a matter of judgement of whether the 
points are well scattered and the line is reasonably straight. The ANOVA is quite 
robust against deviations from the assumptions of homogeneity of variance and nor-
mality of the residuals.

A plot of means
A plot of the means (Figure 6.3) can be obtained from Graphs, plot of means. 
Choose both Treatment and Strain. Options can be used to set the labels of the axes 
and error bars. Note that the two lines are parallel, which indicates that the two 
strains are responding in the same way and there is no interaction between strain 
and treatment.
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Figure 6.2 Residual diagnostic plots for the first chloramphenicol example. Only 
the top two plots are discussed. Note the good scattering of points in the first 
subplot and the reasonable straight line fit in the second plot. Animal 2, which is 
the slight outlier noted in Figure 6.1 is also identified in these plots. Experience 
is required to decide on how well the data fit the assumptions of normality of 
residuals and homogeneity of variance. Here the fit is good.
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Conclusion
This experiment had four treatment groups so it would have been possible to ana-
lyse it by a one-way analysis of variance (ANOVA) using post hoc comparisons. 
However each group would only consist of four experimental units and such an anal-
ysis would not provide a test of whether the two strains responded similarly to the 
effect of the chloramphenicol (the interaction). So it would have been a much less 
useful way of analysing the data.

The overall conclusion is that chloramphenicol administered at 2000 µg/kg 
reduced RBC count from 9.69 to 8.40 units averaged across strains (SD = 0.25, P < 
0.001), and C57BL/6 mice had a lower RBC count (8.86) than BALB/c mice (9.37) 
(SD = 0.25, P = 0.001) averaged across treatments (all units ×1012/L). There is no 
statistically significant strain × treatment interaction so there is no evidence that the 
two strains responded differently to chloramphenicol.

Note that by using two instead of a single strain the experiment has supplied extra 
information at no extra cost because if a single strain had been used, about the same 
total number of animals would have been needed.

Example 6.2: A 2 (strains) × 3 
(doses) factorial experiment

The data in this experiment have been taken from the same large experiment as 
Example 6.1. It illustrates the statistical analysis of a factorial design where there is 
significant interaction. The raw data are given in Table 6.5 (note the random order). 

Plot of Means
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Figure 6.3 Means and standard errors of red blood cell (RBC) counts. Note that 
chloramphenicol at the 1000 dose level reduces RBC count in both strains equally 
(the lines are parallel).
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In this experiment there were two strains, BALB/c and CD-1 and three doses 0, 1000 
and 2000 mg/kg, with red blood count (RBC) (×1012/L) being the dependent varia-
ble. The data are read into Rcmdr in the same way as in the previous example. Note 
that dose is a factor not a variable and Rcmdr needs to be given this information, 
as is explained in the previous example (Data, Manage variables…, Convert…). A 
stripchart should be used to give a preliminary screen of the data (use Group as the 
independent variable). The data are analysed using a two-way ANOVA as previously 
described and the residual diagnostic plots should be studied to see if the assump-
tions are reasonably well met (not shown).

Table 6.6 shows the ANOVA for this experiment. Note that there is a highly 
significant Dose * Strain interaction (P = 0.003) and a significant strain difference 
(P = 0.001) but the dose effect is not statistically significant (P = 0.077). Figure 
6.4 shows clearly what is happening. BALB/c control mice have high RBC counts 
which are sharply reduced by chloramphenicol whereas almost the opposite is true 
with CD-1. As a result there is little change in the mean across both strains when the 
dose is increased. When interactions are present the means of each group should be 
examined and presented separately. The residual diagnostic plots in this case give 
no cause for concern (not shown) and with 18 degrees of freedom (DF) for the error 
term this experiment is about the right size, using the resource equation method of 
determining sample size, as is explained in Chapter 11.

2n factorial experiments
Factorial designs with several factors each at two levels provide an economical way 
of investigating factors which may affect the outcome of an experiment. A 23 (2 × 2 × 
2) factorial design will have three factors designated here for convenience A, B and 

Table 6.5 Raw data to illustrate the statistical analysis of a 2 (strains) × 3 (doses) 
completely randomised (CR) factorial experiment. 

Animal Strain Dose RBC Group Animal Strain Dose RBC Group

 1 CD-1 1000 8.11 g5 13 CD-1    0 9.01 g4

 2 CD-1 1000 9.19 g5 14 BALB/c    0 10.09 g1

 3 CD-1    0 8.27 g4 15 BALB/c 2000 8.95 g3

 4 BALB/c    0 10.08 g1 16 CD-1 2000 8.31 g6

 5 CD-1 2000 9.07 g6 17 BALB/c 2000 8.45 g3

 6 CD-1 1000 9.09 g5 18 CD-1 1000 9.40 g5

 7 CD-1 2000 9.51 g6 19 CD-1 2000 9.18 g6

 8 BALB/c 2000 8.68 g3 20 BALB/c 1000 10.06 g2

 9 BALB/c 2000 8.89 g3 21 CD-1    0 9.10 g4

10 BALB/c 1000 9.99 g2 22 BALB/c 1000 9.38 g2

11 CD-1    0 7.76 g4 23 BALB/c    0 10.10 g1

12 BALB/c    0 9.73 g1 24 BALB/c 1000 9.91 g2

For details see text. RBC: red blood cell count.
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C, each at two levels giving a total of eight groups. There will be three main effects 
(A, B, C), three two-way interactions (A*B, A*C, B*C) and one three-way interac-
tion (A*B*C). If it has a three-fold replication it will need 3 × 8 = 24 experimental 
units and each main effect mean will be based on 12 animals per group.

A 24 factorial design will have four factors each at two levels. With two-fold repli-
cation it will have 16 groups and 32 animals (or other experimental units). Each main 
effect will be based on a comparison of two groups each of 16 animals. Interactions 
of 2, 3, and 4 factors can be assessed.

Table 6.6 Analysis of variance for Example 6.2, a 2 (strains) x 3 (doses) factorial 
experiment. Response: red blood cell count.

DF SS MS F-value P (>F)

Dose  2 1.1383 0.56913 2.9168 0.079939

Strain  1 2.8773 2.87734 14.7462 0.001199**

Dose:Strain  2 3.1417 1.57084 8.0505 0.003181**

Residuals 18 3.5122 0.19512

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares.

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001
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Figure 6.4 Plot of means with standard deviations for a 2 (strains) × 3 (doses) 
factorial design. Note the strong strain × dose interaction. BALB/c control mice 
have a high red blood cell (RBC) count which is reduced by chloramphenicol 
whereas CD-1 control mice have a low count which increases marginally (though 
probably not significantly) with chloramphenicol.
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A 25 factorial design will have five factors each at two levels. It will have 32 
treatment groups, and with two-fold replication per group will require 64 animals. In 
the absence of interaction each main effect will be based on 32 animals. Interactions 
of 2, 3, 4 and 5 factors can be assessed.

If even more factors are to be included, the experiment could become excessively 
large and difficult to handle. In order to reduce the size of the experiment, high order 
interactions (3-5 way) can be used as the error term because they are rarely statis-
tically significant, in which case the experiment can be done as a single replication, 
although in this case missing observations may have an exaggerated influence on 
the results. Even more factors can be included without the experiment becoming 
excessively large using fractional factorial designs and a carefully chosen ‘confound-
ing’ (i.e. mixing) of interactions that are unlikely to be statistically significant. More 
details can be found in major statistical textbooks, e.g. Montgomery, 1997.

Example 6.3: A 24 factorial design

The data in Table 6.7 comes from a 24 (2 × 2 × 2 × 2) factorial experiment. The aim 
was to explore the effects of several factors on a mouse model for assessing whether 
antioxidants might protect against cancer. Diallyl sulphide, a chemical found in gar-
lic, or the vehicle was administered by gavage at 0.2 mg/g body weight for three 
days prior to and three days following treatment with a carcinogen. Carcinogens 
used were either urethane or 3-methylcholanthrene (3MC) given by intraperitoneal 
injection. Half of the mice were males and half females, and half of the animals 
were strain A/J and half were NIH/Ola. The mice were kept for five months, then 
humanely sacrificed and the number of adenomas on the surface of the lungs was 
counted as a measure of tumour susceptibility. There were two animals per group, 
although one animal (an NIH male given 3MC and the vehicle) was missing in group 
6, therefore only data on 31 mice are given.

The data are read into Rcmdr as explained previously. These data are counts of 
tumour numbers rather than measurements. Counts where the mean is low often have 
Poisson distributions in which the mean and variance are equal, leading to heteroge-
neous variances. So the first step is to see whether the data need to be transformed 
to another scale. A trial ANOVA to produce residual diagnostic plots (see Figure 6.5) 
clearly shows that the basic assumptions of homogeneity of variances and a normal 
distribution of the residuals are not met with this set of data. In the first plot most 
of the low values in the left of the plot are close to the mid-line whereas the higher 
values are more scattered. In the Normal Q–Q plot the points do not fall in a straight 
line. Clearly a scale transformation is needed.

The transformation of scale was discussed in Chapter 4. Where the raw data are 
not suitable for a statistical analysis using the ANOVA it is often possible to transform 
the data to a different scale. As the data are counts, and the count is low (compared 
with, for example, RBC counts which do not need a transformation) it is known that 
such data often have a Poisson distribution requiring a square root transformation.

06_FESTING_Ch 06.indd   62 4/15/2016   12:53:39 PM



Factorial experiments  63

Accordingly, a new variable ‘Roottums’ was calculated. In Rcmdr this is done 
using Data, Manage variables in the active data set, Compute new variable. The new 
variable Roottums and the command to produce it (Sqrt (Tumours)) are then given.

A second trial ANOVA of Roottums is used to check whether the transformed 
data can be safely analysed using an ANOVA. This is shown in Figure 6.6. There 

Table 6.7 Raw data from a 24 factorial experiment studying the effect of strain, 
sex, carcinogen (Carc) and antioxidant (Antiox) on lung tumours in mice.

Animal Strain Sex Carc Antiox Tumours Group

 1 A/J Male Urethane Vehicle 24  1

 2 A/J Male Urethane Vehicle 30  1

 3 NIH Male Urethane Vehicle 16  2

 4 NIH Male Urethane Vehicle 16  2

 5 A/J Male Urethane DS  4  3

 6 A/J Male Urethane DS  4  3

 7 NIH Male Urethane DS  3  4

 8 NIH Male Urethane DS  3  4

 9 A/J Male 3MC Vehicle 51  5

10 A/J Male 3MC Vehicle 24  5

11 NIH Male 3MC Vehicle  2  6

12 A/J Male 3MC DS 37  7

13 A/J Male 3MC DS 52  7

14 NIH Male 3MC DS  0  8

15 NIH Male 3MC DS  4  8

16 A/J Female Urethane Vehicle 19  9

17 A/J Female Urethane Vehicle 23  9

18 NIH Female Urethane Vehicle  4 10

19 NIH Female Urethane Vehicle 13 10

20 A/J Female Urethane DS  7 11

21 A/J Female Urethane DS  4 11

22 NIH Female Urethane DS  3 12

23 NIH Female Urethane DS  1 12

24 A/J Female 3MC Vehicle 66 13

25 A/J Female 3MC Vehicle 45 13

26 NIH Female 3MC Vehicle  2 14

27 NIH Female 3MC Vehicle  4 14

28 A/J Female 3MC DS 37 15

29 A/J Female 3MC DS 59 15

30 NIH Female 3MC DS  0 16

31 NIH Female 3MC DS 29 16

3MC: 3-methylcholanthrene, DS: diallyl sulphide.
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is a good scatter of points in the first plot and a good straight line in the second 
(Normal Q–Q) plot showing normality of the residuals. However, there are two seri-
ous outliers labelled in the figure as points 30 and 31. What should be done about 
these? The answer is that they should be checked to see if there is any evidence of 
a mistake. In this case the original records were checked and there is no evidence 
that a mistake has been made. A tumour count of 29 in an NIH mouse is excessively 
high. If tissue is available it is possible, when using inbred strains, to check whether 
this really is an NIH rather than an A/J mouse. However, this experiment was done 
before DNA genetic markers were widely available and no tissue is available. One 
strategy used in such cases is to perform the statistical analysis with and without the 
outliers. If it makes no difference to the conclusions, then the outliers can be kept. 
If the conclusions depend on the outliers, then the experiment probably has to be 
repeated. In this case the conclusions are not changed when the outliers are deleted, 
so they have been kept, but they will have inflated the error in the ANOVA.

The full ANOVA is shown in Table 6.8 and the main effect means and the pooled 
standard deviation are shown in Table 6.9a. There is a statistically significant effect 
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Figure 6.5 Trial residual diagnostic plots. Note the cluster of points around zero 
in the top left-hand plot with low fitted values. This shows extreme heterogeneity of 
variance. The second plot also shows that the residuals plot deviates seriously from 
a straight line. A transformation of scale is clearly needed. The remaining two plots 
offer a more detailed analysis of the residuals, but they are not discussed here.
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of the antioxidant with a mean Roottums of 3.08 in the antioxidant group versus 4.32 
in the saline group. Therefore, the antioxidant appears, on average, to be reducing the 
number of tumours. The pooled SD from the error mean square is 1.27 on this scale. 
Means for the other main effects as well as two-way tables can be produced using 
Statistics, Summaries, Tables of statistics. The carcinogen effect is significant with 
the 3MC treatment producing 4.41 Roottums compared with 3.00 for the urethane, 
but this is an effect of the carcinogen dose so is not of direct interest. There was a 
very large strain effect with A/J getting 5.13 and NIH 2.13 Roottums, but there was 
no significant difference between the sexes (P = 0.983).

There are two significant two-way interactions. First, the two strains differ in 
their relative sensitivity to the two carcinogens, with 3MC inducing many more 
tumours in A/J than in NIH mice (Table 6.9b). The strain difference when the mice 
were treated with urethane was much less. Second, the antioxidant substantially 
reduced the tumour count when the carcinogen was urethane (from 4.1 to 1.9 on 
the square root scale), but it failed to significantly reduce the tumour count when 
the carcinogen was 3MC. This is shown in Figure 6.7. It seems that the benefit of 

 

lm(roottum ~ antiox * carc * sex * strain)

 

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

30

31

9

Theoretical quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q-Q

30

31

9

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s Scale-Location

30

9

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook’s distance 0.5

0.5

Residuals vs Leverage

30

31

9

3
2
1

1 2 3 4 5 6 7

1 2 3 4 5 6 7

0
−1
−2
−3

3
2
1
0

−1
−2
−3

3
2
1
0

−1

−3
−2

−2 −1 0 1 2

1.5

1.0

0.5

0.0

0.0 0.1 0.2 0.3 0.4 0.5

Figure 6.6 Residual diagnostic plots following a square root transformation 
of the data. Note the good scattering of points in the first plot. However, there 
are two serious outliers labelled 30 and 31. The second top plot shows a good 
straight line, implying that the residuals now have a normal distribution, apart 
from the two outliers. The remaining two plots offer a more detailed analysis of 
the residuals, but they are not discussed here.
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Table 6.8 Analysis of variance table for the square root of the tumour count. 
Response: Roottums.

DF SS MS F-value P (>F)

Antioxidant (Antiox)  1 11.946 11.946 7.4262 0.0156502*

Carcinogen (Carc)  1 16.349 16.349 10.1628 0.0061133**

Sex  1 0.001 0.001 0.0005 0.9829563

Strain  1 65.591 65.591 40.7734 1.225e-05***

Antiox:Carc  1 10.051 10.051 6.2483 0.0245224*

Antiox:Sex  1 0.931 0.931 0.5790 0.4585113

Carc:Sex  1 2.861 2.861 1.7784 0.2022397

Antiox:Strain  1 0.347 0.347 0.2159 0.6488533

Carc:Strain  1 31.194 31.194 19.3911 0.0005133***

Sex:Strain  1 0.070 0.070 0.0437 0.8372813

Antiox:Carc:Sex  1 0.370 0.370 0.2302 0.6383281

Antiox:Carc:Strain  1 0.137 0.137 0.0854 0.7741417

Antiox:Sex:Strain  1 0.683 0.683 0.4243 0.5246580

Carc:Sex:Strain  1 0.377 0.377 0.2342 0.6353883

Antiox:Carc:Sex:Strain  1 0.834 0.834 0.5186 0.4825002

Residuals 15 24.130 1.609

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares.

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001

Table 6.9a Main effect means and n.

Treatment Mean n

DS 3.08a 16

Vehicle 4.32 15

3MC 4.41b 15

Urethane 3.00 16

Female 3.72 16

Male 3.64 15

A/J 5.13 16

NIH 2.13 15

Pooled standard deviation = 1.27. aP = 0.02, bP = 0.01. 3MC: 3-methylcholanthrene, DS: diallyl 

sulphide.

the antioxidant depended on the nature of the carcinogen. More work would be 
needed to determine how general a reduction in tumours would be in relation to 
different carcinogens.
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Conclusions

This chapter has explained the advantages of using factorial experiments. The exper-
iment to determine the effect of wheel activity on learning in mice, introduced in 
Chapter 5, used three groups of nine mice in each group. It would probably have 
been better to use, say, eight mice per group in a factorial design with half being 
male and half being female. In this way information in the responses of both sexes 
could have been obtained at no extra cost. This makes the assumption that there is 

Table 6.9b The strain by carcinogen means.

Treatment

Strain

A/J NIH

3MC 6.74 1.74a

Urethane 3.52 2.48

Pooled standard deviation = 1.27. Interaction, P < 0.001. an = 3 in this group but 4 in the other 

groups. 3MC: 3-methylcholanthrene.

Plot of Means
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Figure 6.7 A plot of the carcinogen × antioxidant interaction. Note that diallyl 
sulphide (DS) reduces the root tumour count when urethane is the carcinogen, 
but hardly does so when 3-methylcholanthrene (3MC) is the carcinogen. This 
interaction is statistically significant (P = 0.025).
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no difference in variability between the two sexes, and this would be studied by 
looking for heterogeneity of variance using the residual diagnostic plots. However, a 
meta-analysis of 293 papers involving both sexes with the stage of the oestrus cycle 
in the females being uncontrolled gave no evidence for greater variability in females 
than in males (Prendergast et al., 2014).

Most clinical trials are already logistically quite complex, so factorial designs, 
which add some complexity, are not widely used. But experiments involving labo-
ratory or farm animals are logistically relatively simple, and offer complete control 
of the animals, so factorial designs should always be considered. They provide extra 
information at little or no additional cost. The National Institutes of Health in the 
USA requires investigators there to use both sexes in their experiments and this can 
usually be done without increasing the total number of animals if factorial designs 
are used.
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7
Randomised block 
designs

Introduction

Compared with completely randomised (CR) designs, randomised block (RB) 
designs are usually more powerful, logistically more convenient, make better use of 
heterogeneous subjects and environments, and can often take account of the natural 
structure in experimental subjects. The individual blocks may also provide an inter-
nal check on the repeatability of an experiment. These advantages as so compelling 
that RB designs should replace the CR designs as the default design in experiments 
involving laboratory animals.

In an RB design the experiment is split up into a number of mini-experiments or 
‘blocks’. A block usually has a single experimental unit of each treatment. So if there 
are four treatments each block will consist of four experimental units, each assigned 
to a different treatment. Each block is separately randomised (see Chapter 3).

Blocks can be separated in time so that the experiment is spread over hours, days 
or weeks at the convenience of the investigators. They can also be separated in space. 
So each block can be on a shelf or in a different room, or even in different labora-
tories. Blocks can often take account of some natural structure in the experimental 
material. For example, animals from a single litter may be used as a block.

An RB design is sometimes used in in vitro studies but the investigators may not 
realise this, so they may analyse it incorrectly. For example, an investigator may state 
that ‘we repeated the experiment three times’ without realising that each replication 
is a block in an RB design. Then they do not carry out the appropriate statistical 
analysis (i.e. a two-way analysis of variance without interaction).

The characteristics of RB designs

These designs are distinguished from CR designs in that they have a single ran-
dom effect factor (the block) in addition to one or more fixed effect factors. For 
example, ‘litter’ may be a random effect factor (the block) when performing a 
within-litter experiment in pre-weaned animals. Several litters would be involved 
and these could be used at different times. Time alone can also be treated as a factor 
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when the experiment is split up over a period of hours, days or weeks because 
there are uncontrollable and/or unobservable rhythms which may influence the 
experimental units.

There are a number of named designs which, mathematically, are equivalent to 
RB designs, i.e. they have a random effect factor and one or more fixed effect factors. 
These include:

1. Crossover designs: In these designs, an animal or other subject is given a set of 
treatments sequentially in random order. In this case, the experimental unit is an 
animal for a period of time and the block is the animal.

2. Matched designs: In these designs, n experimental units are matched, where n is 
the number of treatments, and then one of these is assigned to each treatment at 
random. This is repeated r times, where r is the required sample size.

3. Within-subject designs: In these designs, an animal or other subject can provide 
several experimental units, such as two eyes or several skin patches, which can 
receive different treatments. The block is then the animal and the experimental 
unit is, say, an eye or a patch of skin.

4. Latin square designs: These belong to the same family of designs. They have 
two random effect factors (often known as rows and columns) as well as one or 
more fixed effect factors such as ‘treatment’.

Advantages of RB designs

These designs are often more convenient than CR designs because they allow the 
experiment to be split up in time or space, making it easier to handle. Blocking on 
time is particularly useful for large experiments where it may be difficult to carry out 
all the procedures and measurement of outcomes within a limited time.

RB designs usually increase the power of an experiment. By matching subjects 
which receive different treatments they decrease the error variation and increase 
the power of the experiment (the concept of statistical power is introduced in 
Chapter 9). Even quite heterogeneous animals (or other experimental units) can be 
used in RB designs if they can be matched on age, weight, source or other important 
characteristics.

RB designs can take account of any natural structure of the experimental mate-
rial. Litters of mice and rats are an obvious example where each litter could be a 
separate block.

RB designs can increase the repeatability of an experiment. If the blocking factor 
is time, then they will help to ensure that experiments are repeatable in time. If they 
give a different result each time, then no statistically significant treatment effects will 
be detected.

By sampling from a slightly different environment in each block an RB design 
also slightly increases external validity, i.e. the extent to which the results can be 
generalised.
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Disadvantages of RB designs

The main disadvantages are that a very small experiment with a small or non-existent 
block effect will lack power, but this is a relatively rare situation. RB designs are also 
less tolerant of several missing observations than are CR designs.

Statistical analysis of an RB design

In an RB design with a single treatment factor each observation is defined by the 
block and treatment. The statistical analysis is done using a two-way ANOVA ‘without 
interaction’. Treatments are a fixed effect, i.e. the levels are determined by the inves-
tigator but blocks and the block by treatment interaction are random effects. The 
latter provides an estimate of the error variation. Blocking on fixed effect factors 
such as gender should be avoided because there may be real gender × treatment 
interactions. RB designs can also have a factorial set of treatments in which case 
there will be two or more fixed effect factors plus the single random effect factor.

Examples

Example 1: Removing the effect of rabbit size:  
a ‘matched pairs’ design
When comparing two treatments, which may be size-related, pairs of rabbits would 
be matched for body weight and then one assigned at random to each treatment. Each 
pair is a block. If there were three treatments, then each block would consist of a trio 
of rabbits. It is assumed that any response to the treatment will be approximately the 
same in each block and that differences between blocks are of no interest. Note that 
blocks can differ by more than one source of variation. For example, a block of large 
subjects might be treated in the morning and small subjects in the afternoon so the 
blocks differ in both time and size. Any variation due to size and time of day, which 
do not need to be separately identified, will be removed in the statistical analysis.

Treatment means are estimated by averaging across all blocks. When there are 
only two treatments the experiment can be analysed either by a paired t-test or by 
a two-way ANOVA without interactions. These two methods are mathematically 
identical.

Example 2: Apoptosis in rat thymocytes:  
blocking in time
The aim of this very small experiment was to check that two drugs designated CPG 
and STAU cause apoptosis (programmed cell death) in rat thymocytes. The drugs 
were to be used in further studies and the investigators wished to be certain that they 
worked. In this respect it could be classified as a pilot study.
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Each week, for three weeks they humanely killed a single rat, removed the thy-
mus, and prepared the thymocytes. These were pipetted into three tissue cultures. 
Solutions of the three treatments (vehicle, CPG and STAU) were added to the dishes. 
The dishes were incubated for a specified period and the apoptosis was scored. The 
dishes were the experimental units and the blocking factor was ‘week’. The outcome 
was the apoptosis score.

Statistical analysis using R-Commander (Rcmdr)
The data (Table 7.1) are read into Rcmdr from the clipboard using Data, import 
data, checking the clipboard button and naming the data set in the box provided (if 
wanted). Note that both treatment and blocks are designated alphabetically so that 
Rcmdr considers them to be factors. If blocks or treatments had been designated 1, 2, 
3, then Rcmdr would need to have been told that these are factors, not numerical var-
iables. Note also that Rcmdr sorts and compares groups alphabetically so the name of 
the control group should start with a letter earlier in the alphabet than the treatment 
groups (as happens here). Treatment names can be adjusted so that the control group 
(when present) comes first.

As already noted, the data should be screened for any serious outliers. With 
two-way (e.g. RB) designs stripcharts are not particularly useful if there are large 
block differences. Individual observations can be plotted using an index plot 
but this is perhaps better done using an EXCEL bar chart. Figure 7.1, drawn in 
EXCEL, shows that the relationships between the three treatments is the same in 
each block but the scores in block C were all much lower than those in blocks A 
and B. The reason for this is unknown. The protocols were the same each week 
and it might be assumed that the experiment is simple enough to ensure that the 
scores were very similar on each replication. In fact, large block differences are 
common, suggesting that historical data should be treated with great caution. 

Table 7.1 Apoptosis score in rat thymocytes.

Treatment Block Score

C A 365

CPG A 398

STAU A 421

C B 423

CPG B 432

STAU B 459

C C 308

CPG C 320

STAU C 329

Treatment (C): control.

07_FESTING_Ch 07.indd   72 15-Apr-16   10:05:38 AM



Randomised block designs  73

0

50

100

150

200

250

300

350

400

450

500

1 2 3

Apoptosis in rat thymocytes

C CPG STAU

Figure 7.1 Plot of the raw data in the apoptosis experiment (drawn in EXCEL). 
One block was completed each week for three weeks. Treatments were C, CPG 
and STAU. Note the good repeatability within each week, but large differences 
between weeks. These differences are separated out as a block effect in the two-
way ANOVA without interaction so do not contribute to the error.

As the effect of the block is removed in the statistical analysis they are of no con-
cern in a properly designed RB experiment.

Another approach to screening the raw data is to do the ANOVA and look at the 
residual diagnostic plots, which show individual points. These are not shown here 
as there is no evidence either of heterogeneity of variances or non-normality of the 
residuals.

The ANOVA is done using Statistics, Fit model, Linear model. The form requires 
input of the dependent variable (‘Score’ in this case), the treatment, ‘+’ (instead of 
the ‘*’ used for a factorial design) and the block.

The resulting linear model analysis is shown in Table 7.2. First is a list of resid-
uals. A serious outlier would show up as a large value. Next is a list of coefficients. 
These compare the means of the first group (controls, because alphabetically C comes 
before CPG and STAU) with the other groups. The last column provides a P-value 
for comparison of the controls with the other two groups. Therefore, the P-value for 
CPG is 0.086 and for STAU it is 0.009. Thus only STAU differs statistically from 
the controls at the 5% level of significance. The effect of each block is also shown, 
but these are of no direct interest. However, it is worth noting that large block effects 
imply that there are some uncontrollable factors having an important effect on the 
measurements. The output also gives the residual standard error of 9.735. This is the 
square root of the error mean square, and is the standard deviation (SD) that should 
be quoted with the means. The adjusted R-squared is 0.9688. This is the proportion 
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of the total variation accounted for by the fitted model. This is a high value, implying 
a good fit. There is clearly very little variation in this experiment that is not taken 
into account by the mathematical model which has been fitted. Therefore, although 
by any criterion the experiment is excessively small, it can still identify statistically 
important effects.

Treatment means are obtained from Statistics, Summaries, Numerical summaries. 
However, the individual SDs should be ignored as they include differences between 
the blocks. The pooled standard error should always be used when presenting the 
results of an RB design.

The ANOVA (see Table 7.3) is obtained from Models, Hypothesis tests, ANOVA 
table and click ‘Type I’. The means and the pooled SD are shown in Table 7.4.

Example 3: A crossover experiment
The aim of this experiment was to determine taste preferences in C57BL mice. These 
data are given in Table 7.5. There were four boxes each containing two C57BL/6 
female mice. Each box had two water bottles, one of distilled water and the other 
containing the test solution. The bottles were re-filled daily and their positions were 
reversed. Each box had the test solutions for five days with distilled water in both 
bottles over the weekend. There were five treatments given in random order to each 
box, including a control group which had both water bottles filled with water, one 
of which was designated the ‘treatment’. The data are the percentages of the total 
fluid consumed that was the test fluid, by weight. The test solutions were water (the 
control), saccharine, sodium chloride, sucrose, and ethanol.

Table 7.3 Analysis of variance of the apoptosis data. Response: score.

DF SS MS F-value P-value

Treatment 2 2129.6 1064.8 11.235 0.0228374*

Block 2 21764.2 10882.1 114.817 0.0002931***

Residuals 4 379.1 94.8

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares. *p<0.05, ***p<0.001

Table 7.4 Means and pooled standard deviation for the apoptosis data.

Treatment Mean

C 365

CPG 383

STAU 403*

Pooled standard deviation = 9.74. *Significantly different from C (control) (P < 0.05).
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Table 7.5 Raw data for the taste preference experiment. 

ID Cage (block) Treatment1 Score

 1 B1 B 69.6

 2 B1 C 61.9

 3 B1 A 54.9

 4 B1 E 69.4

 5 B1 D 78.3

 6 B2 A 48.2

 7 B2 D 81.5

 8 B2 E 60.9

 9 B2 B 61.1

10 B2 C 43.9

11 B3 C 53.4

12 B3 D 74.7

13 B3 A 49.9

14 B3 B 58.2

15 B3 E 68.5

16 B4 E 64.5

17 B4 A 50.4

18 B4 D 73.6

19 B4 B 55.3

20 B4 C 50.7

Note that the experimental unit is a cage of two mice for five days. Each block (cage) has been 

separately randomised. 1A = control, B = 0.02% saccharine, C = 0.05 mmol/L sodium chloride, 

D = 0.04 mmol/L sucrose, E = 10% ethanol.

In this experiment the experimental unit was a cage of two mice for five days, 
the block was the cage, the treatments were the test solutions and the dependent 
variable was the weight of the test fluid consumed expressed as a percentage of 
the total fluid.

The statistical analysis is very similar to Example 2. The data are read into 
Rcmdr. A stripchart is used to study individual data points (not shown). These 
may be scattered to some extent by block differences. The statistical analysis 
involves fitting a linear model as previously described (Statistics, Fit model, Linear 
model). The residual diagnostic plots should be studied. In this case they give no 
cause for concern (not shown). The output from Rcmdr is shown in Table 7.6. 
The control treatment (distilled water) was coded treatment A, and it can be seen 
that treatments B, D and E all resulted in a statistically significant increase in 
consumption of the test solutions, whereas there was no preference for treatment 
C. Strain C57BL/6 is known to like ethanol whereas some other strains avoid it. 
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Table 7.6 Output from fitting a linear model (LM) to the taste preference data. 

Call:
Lm(formula = Score ~ Cage + Treatment, data = Taste)

Residuals:

Min 1Q Median 3Q Max

-6.250 -1.951 -0.385 2.165 6.800

Coefficients:

Estimate Std error t-value P (>|t|)

(Intercept) 56.225 2.482 22.655 3.24e-11***

Cage [T.B2] -7.700 2.482 -3.103 0.009146** 

Cage [T.B3] -5.880 2.482 -2.369 0.035450*

Cage [T.B4] -7.920 2.482 -3.191 0.007758**

Treatment [T.B] 10.200 2.775 3.676 0.003172** 

Treatment [T.C] 1.625 2.775 0.586 0.568968

Treatment [T.D] 26.175 2.775 9.433 6.70e-07***

Treatment [T.E] 14.975 2.775 5.397 0.000161***

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001

Residual standard error: 3.924 on 12 degrees of freedom (DF).

Multiple R-squared: 0.9164, adjusted R-squared: 0.8676.

F-statistic: 18.78 on 7 and 12 DF, P-value: 1.418e-05.

Note that treatment means B, D and E differ from the controls (P < 0.01), but treatment C does 

not.

Table 7.7 Analysis of variance for the taste preference experiment. Response: 
score.

DF SS MS F-value P-value

Cage  3 205.14 68.38 4.4407 0.02557*

Treatment  4 1819.17 454.79 29.5350 3.962e-06***

Residuals 12 184.78 15.40

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares. *p<0.05, ***p<0.001

R-squared, the proportion of the variation accounted for by fitting the model was 
91.6%, a high value. The ANOVA is shown in Table 7.7 and the treatment means 
are given in Table 7.8, and are plotted in Figure 7.2. It can be concluded that 
C57BL/6 mice prefer solutions of saccharine, sucrose and ethanol, but are indif-
ferent to salt at the dose levels used.
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Table 7.8 Means for the taste preference experiment.

Treatment1 Mean (% drunk from test bottle)

A (water) 50.850

B (saccharine) 61.050*

C (sodium chloride) 52.475

D (sucrose) 77.025*

E (ethanol) 65.825*

1n = 4, pooled standard deviation = 3.92, *P < 0.05.
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Figure 7.2 Taste experiment. Plot is of individual observations by cage (block) 
and treatment. Note the good agreement between blocks. Treatments are  
A = control, B = 0.02% saccharine, C = 0.05 mmol/L sodium chloride, D = 0.04 
mmol/L sucrose, E = 10% ethanol.

Example 4: An RB experiment with  
a factorial treatment structure
As noted in Chapter 6 a factorial treatment structure can be used for a CR design, an 
RB design as well as other designs.

The aim of this experiment was to discover whether the antioxidant diallyl sul-
phide, a chemical found in garlic, affects the activity (nmol conjugate formed per 
minute per mg of protein) of a liver enzyme glutathione-S-transferase (Gst) in four 
mouse strains. It was of particular interest to see if there were large strain differences 
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Table 7.9 Raw data for a 2 (treatments) × 4 (strains) experiment in two blocks.

Strain Treatment Gst Block

129/Ola C  447 A

A/J C  408 A

129/Ola T  719 A

BALB/c C  423 A

BALB/c T  625 A

NIH T  614 A

NIH C  444 A

A/J T  856 A

A/J T 1002 B

A/J C  609 B

BALB/c T  782 B

NIH T  831 B

NIH C  764 B

129/Ola T  766 B

BALB/c C  586 B

129/Ola C  606 B

Note randomisation within each block. Gst: glutathione-S-transferase.

in response. It involved two blocks separated, for logistical reasons, by a period of 
approximately two months. Each block consisted of eight mice: a treated and a control 
mouse of each of the four strains. The raw data are given in Table 7.9.

In Rcmdr the linear model box (Statistics, Fit model, Linear model) needs ‘Gst 
~ Block + Strain * Trt’ to be entered into the boxes provided. Note the plus symbol 
following Block and the multiplication symbol following Strain. This code indicates 
that Gst levels depend (~) on Block plus the treatment and strain effect and the strain × 
treatment interaction.

The ANOVA is given in Table 7.10. As is common in RB designs there was a 
substantial block difference. The reason for this is unknown. The protocols were 

Table 7.10 Analysis of variance for glutathione-S-transferase (Gst) activity in a 2 × 4 
factorial design in two blocks. Response: Gst.

DF SS MS F-value P-value

Block 1 124256 124256 42.0175 0.0003398***

Strain 3  28613   9538  3.2252 0.0914353

Treatment 1 227529 227529 76.9394 5.041e-05***

Strain:Treatment 3  49590  16530  5.5897 0.0283197*

Residuals 7  20701   2957

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares.*p<0.05, ***p<0.001
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Figure 7.3 Plot of treatment means from a 4 (strains) × 2 (treatments) factorial 
experiment. Note that there is a significant (P < 0.05) treatment effect as well as 
a strain × treatment interaction (P = 0.03) which is due to the larger response in 
A/J than in the other strains. The results are plotted without error bars in this case 
because they need to be based on a pooled standard deviation. For publication 
purposes they should be re-plotted using the pooled standard deviation. T: 
treatment, C: control.

Table 7.11 Strain and treatment means for the glutathione-S-transferase (Gst) 
experiment.

Strain Mean (n = 4)

129/Ola 634.5

A/J 718.7

BALB/c 604.0

NIH 663.2

Strain means are not significantly different P = 0.09. But there is a significant (P = 0.03) 
strain by treatment interaction. This is due to the increased response in strain A/J.

Treatment Mean (n = 8)

Control 535.8

Treated 774.3

Pooled standard deviation = 53.4. The difference is highly significant, P < 0.01.
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identical and the same person carried out the Gst determinations. The block differ-
ences present no problem as they are removed in the statistical analysis.

There were no significant strain differences, but there was a significant effect 
of the treatment and a significant strain × treatment interaction due to the larger 
response in strain A/J than the other strains. This is shown in Figure 7.3.

Treatment and strain means are given in Table 7.11.

Reproducibility

One of the advantages of RB designs is that they can provide some internal assur-
ance of the reproducibility of the experiment, particularly if time and/or location are 
blocking factors, as was the case in the experiment discussed above. If the blocks 
are not in agreement, then there will be no statistically treatment effects. Figure 7.4 
(prepared in EXCEL) shows that there is a good level of agreement between the two 
blocks for each treatment by strain combination.

Another example shows a lower level of agreement. ‘Big Blue’ mice are used to 
assess the possible mutagenicity, and therefore carcinogenicity of a chemical. They 
are transgenic for a shuttle vector consisting of a stretch of Escherichia coli DNA. 
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Figure 7.4 Plot showing agreement between blocks A and B. All the 
observations in block B are substantially higher than those in block A. But 
in order to show agreement between blocks this plot shows individual 
observations following subtraction of the mean block difference from block 
B and subtraction of 300 units. The agreement is good apart from some 
differences in the NIH controls (C) and 129/Ola treated (T) group. This plot is 
done using EXCEL. A plot of this type is not normally required. If the agreement 
is poor, then no statistically significant treatment effects would be observed. 
Gst: glutathione-S-transferase.
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Table 7.12 Raw data from a multi-laboratory study. Data are the number of blue 
plaques per hundred thousand plaques.

Dose Laboratory Plaques

1.Control A 23.1

1.Control B 19.8

1.Control C 10.4

1.Control D 11.6

1.Control E 29.4

2.Low A 39.4

2.Low B 29.8

2.Low C  6.3

2.Low D 23.3

2.Low E 34.9

3.High A 39.8

3.High B 27.8

3.High C 17.0

3.High D 24.6

3.High E 38.3

The mice can be treated with the test chemical and the DNA can be recovered and 
transfected into E. coli and grown on agar plates. Any colony which has a mutation 
will result in a blue plaque in the lawn of colourless plaques. The data in Table 7.12 
are gathered from an experiment in which a new way of counting the plaques was 
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Figure 7.5 Plot of individual observations to indicate agreement. 
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being investigated. Coded samples of DNA from three mice given none, low, or a 
high dose of a carcinogen were sent to five laboratories. These all used the same 
protocol to count the plaques (unfortunately, no further details are available). A 
statistical analysis shows that the low and high dose counts differ significantly from 
the control at P = 0.016 and P = 0.003, respectively.

The reproducibility of these results is shown in Figure 7.5. There are clearly 
substantial differences between the laboratories/times in the mean response, as seems 
to be common with RB designs. At least the control is always lower than the high 
dose and in four out of five cases the control is lower than the low dose. However, 
the investigators decided that this level of reproducibility was not acceptable and no 
further development of this method was undertaken inspite of the highly significant 
differences between the treatments.
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8
Split plots, Latin 
squares, covariance and 
other techniques

The split plot design

A split plot experiment is officially defined as a randomised block (RB) design with 
blocks being confounded with a major factor. An alternative definition would be that 
it is an experiment with two (or more) different levels of experimental units.

This design could arise in situations where animals receiving different treatments 
can be housed in the same cage, and the investigator wishes to use both males and 
females. Clearly, the two sexes cannot also be housed in the same cage, so the exper-
iment might consist of several cages of males and the same number of cages of 
females, with each cage having one animal on each treatment. In this case the cage 
would be the experimental unit for comparing males and females but the animal 
would be the experimental unit for comparing the treatments.

The design could also arise when using a crossover or within-subject design in 
which the experimental unit is an animal for a period of time or, for example, a patch 
of skin with several patches per animal, and both sexes are used. In this case the 
experimental unit for comparing treatments would be the animal for a period of time 
or the skin patch, and the experimental unit for comparing males and females would 
be the whole animal.

The main problem with this design is that the gender differences (main plot level) 
will be poorly estimated because the sample size will be low, but the treatment dif-
ferences and the gender × treatment effects will be well estimated, depending on 
sample sizes.

Split plot designs are worth knowing about because these situations can some-
times arise without the investigator being aware that they are using a split plot design.

A numerical example of a split plot design
Table 8.1 uses some artificial data to illustrate the analysis. There were six cages 
each with two animals; one treated and one control. Three cages contained males 
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and three contained females. The two animals within a cage were assigned either to 
the control or the treatment, given by injection. It is assumed that there could be no 
cross-contamination between treatments. The measured outcome (dependent variable) 
was body weight.

The data were read into R-Commander (Rcmdr) and a stripchart showing individual 
points was used to check the data (not shown).

In R a split plot design can be analysed with a single command but in Rcmdr a 
two-step statistical analysis is necessary, reflecting the nature of the experiment with 
two different types of experimental units (animals and cages).

First, the data in Table 8.1 were analysed as a 2 (sexes) × 2 (treatments) factorial 
design using Statistics, Fit model, Linear model. The ‘BodyWt’ is the dependent 
variable and the factors were Treatment * Sex. As usual, diagnostic plots should be 
used (not shown) to check the assumptions for using a parametric test.

Table 8.2 shows the resulting analysis of variance (ANOVA) (Models, 
Hypothesis tests, ANOVA table). The effect of Treatment and the Treatment * Sex 
interaction are each correctly based on 1 and 8 degrees of freedom (DF). However, 
the statistical significance of the sex difference with one DF is incorrect (and has 
been struck through). That needs to be tested against the variation between cages 
using a second one-way ANOVA of cage means (averaged across treatments), 
reflecting the fact that for comparing the sexes the cage with two animals in it is the 
experimental unit. This is shown in Table 8.3. A plot of the gender and treatment 
means is shown in Figure 8.1. As with a factorial design if there is a strong inter-
action between the main plot and split plot factors, then it is really the interaction 
which is of most interest.

Table 8.1 Fictitious data to illustrate the statistical analysis of a split plot experiment.

Cage Sex Treatment BW

A
A

M C 34.7

M T 43.6

B
B

M C 33.6

M T 52.5

C
C

M C 31.4

M T 55.0

D
D

F C 24.5

F T 26.1

E
E

F C 32.2

F T 27.3

F
F

F C 25.8

F T 29.0

BW: body weight (grams).
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Figure 8.1 Plot of means for the split plot data in Table 8.1 showing the 
statistically significant interactions between sex and treatment as shown in Table 8.3. 
T: treatment, C: control.

Table 8.2 Analysis of the data from Table 8.1 as a Sex × Treatment factorial 
design. Response: body weight.

DF SS MS F-value P-value

Sex 1 614.9 614.9 42.524 0.000184***

Treatment 1 219.31 219.31 15.166 0.004581**

Sex:Treatment 1 221.02 221.02 15.285 0.004484**

Residuals 8 115.68 14.46

m1 = aov (BodyWt ~ Sex × Treatment + Error (Cage)).

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001

Note that the Sex differences (struck through) are not correctly estimated by this analysis. 

These are obtained from a one-way analysis of variance (ANOVA) of the cage means as given in 

Table 8.3. DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares.

Conclusion
A split plot could be a sensible design to use in cases where animals receiving different 
treatments can be housed together. In the special case of a within-animal experiment it 
is the only possible design if the experiment is to include both sexes. Remember, how-
ever, that the differences at the main block level are not estimated with much precision.
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Latin square designs

These designs are an extension of the concept of an RB design to an additional 
dimension. They were developed for agricultural field experiments where a field 
may vary in fertility in both a North–South and in an East–West direction. The power 
of the experiment can be increased by taking this into account. The design is rarely 
used in experiments involving laboratory animals, but there are situations where it 
may be useful.

In this design the number of experimental units is the square of the number of 
treatments. For example, if there are four treatments 16 experimental units will be 
needed and the experiment will be quite small, so may lack power (E, the error 
DF used in the resource equation method for determining sample size explained in 
Chapter 11, is only 6 when it should be at least 10). With seven treatments a total 
of 7 × 7 = 49 experimental units will be needed and the experiment will be quite 
large. Like the completely randomised (CR) and randomised block (RB) designs 
it can have a factorial arrangement of treatments. For example, a 2 × 2 factorial 
experiment has four treatments such as male treated, male control, female treated 
and female control. 

As an example, suppose that there had only been four treatments in the taste 
experiment described in Chapter 7 (Example 3). It could then have been designed as 
a 4 × 4 Latin square. Such a design has exactly one of each treatment in each row and 
one of each treatment in each column. So in this case the rows would be the cage, 
each of which would have the four treatments, and the columns would be the weeks 
in which the treatments would be given.

Randomising a Latin Square design
The treatments in an un-randomised 4 × 4 Latin square design can be written A, B, 
C, D in the first row, B, C, D, A in the second row (i.e. the first letter, A in this case, 
placed at the end) and C, D, A, B in the third row, etc. More letters are needed for 
larger experiments. The result is that each row and column will have exactly one 
of each treatment. Randomisation is done by randomising whole rows followed by 
whole columns. This retains the structure of each row and column having exactly 
one of each treatment but they are now in a random order. The actual randomisation 
could be done by using cards with A–C on them which are then shuffled for each 
row and column.

Table 8.3 The one-way analysis of variance of cage totals comparing the two sexes.

DF SS MS F-value P-value

Sex 1 307.45 307.45 60.12 0.00149**

Residuals 4 20.46 5.11

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares. ** p<0.01
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A numerical example
The same data that were used in Example 3 in Chapter 7 to illustrate a crossover 
design, but with one treatment omitted, are used here to illustrate the statistical anal-
ysis of a 4 × 4 Latin square experiment (although that is not how it was actually 
designed). These data are shown in Table 8.4. Note that each cage (row) and each 
week (column) now have one of each treatment. The data are read into Rcmdr in 
the usual way. First, in Rcmdr the row and column numbers need to be converted to 
factors (Data, manage variables in the active data set, convert numerical variables 
to factors). They can be kept as numbers. Then: Statistics, Fit model, Linear model. 
The percent fluid consumed is the dependent variable. The independent variables are 
Treatment + Cage + Week. The ANOVA (see Table 8.5) is obtained from Models, 
hypothesis tests, ANOVA table. In this case there is a highly significant treatment 
effect, a row effect which approaches significance at P = 0.07 and a non-significant 
column effect (as expected).

Means can be obtained from Statistics, Summaries, Numerical summaries. 
However, a pooled standard deviation (SD) should be used, the square root of the 
residual mean square in the ANOVA table, i.e. √ (15.4) = 3.92, not the individual SDs 
which contain variation due to the blocking.

Diagnostic plots can be obtained in the usual way. The control treatment (water) 
was designated as A, so the output from fitting the linear model shows which 
treatments differ significantly from the control (in this case B at P = 0.01 and D at 
P < 0.001). A plot of the means for each week is shown in Figure 8.2.

Table 8.4 Data to illustrate the statistical analysis of a Latin square experiment.

Treatment Cage Week Percent

B 1 1 69.6

C 1 2 61.9

A 1 3 54.9

D 1 4 78.3

A 2 1 48.2

B 2 2 61.1

D 2 3 81.5

C 2 4 43.9

C 3 1 53.4

D 3 2 74.4

B 3 3 58.2

A 3 4 49.9

D 4 1 73.6

A 4 2 50.4

C 4 3 50.7

B 4 4 55.3

A = water, B = saccharine, C = sodium chloride, D = sucrose.
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Table 8.5 Analysis of variance table for the Latin square example. Response: percent.

DF SS MS F-value P-value

Treatment 3 1713.26 571.09 37.0359 0.0002885***

Cage 3 186.99 62.33 4.0422 0.0687220

Week 3 65.93 21.98 1.4252 0.3249437

Residuals 6 92.52 15.42

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares. ***p<0.001
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Figure 8.2 Plot of treatment means for each week in the Latin square example. 
Note some minor changes in the ranking each week, but the results are reasonably 
consistent.

A Latin square design is most likely to be of benefit if there is a trend in the obser-
vations over both rows and columns, which is not the case here.

Repeated measures designs

There is confusion and disagreement in the literature about ‘repeated measures’ 
designs. In most textbooks (Montgomery, 1997) this is just another name for a cross-
over experiment where a series of treatments is given sequentially to an animal, with 
some dependent variable being measured after each treatment. The experimental unit 
is an animal for a period of time.
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Figure 8.3 In a ‘repeated measures’ design in which serial measurements are 
taken from an experimental unit without a change of treatment it may be best to 
convert the observations on each individual to one of the options shown here:  
(a) the mean of the set of observations or (b) the slope of the line or (c) the area 
under the curve or (d) time to reach a peak.

However, in other textbooks the term ‘repeated measures’ is used in situations 
where an experimental unit is given a treatment and then several sequential meas-
urements are made without any change of treatment. It is claimed that ‘time’ is a 
treatment. But because ‘times’ cannot be assigned at random, an analysis based on 
the assumption that they are experimental units is open to criticisms. The repeated 
measurements are more like outcomes than experimental units (Mead et al., 1993).

Clearly it is sometimes of interest to know what happens in the time following a 
treatment. But it seems wiser to use an alternative approach to the analysis of such 
data. The easiest approach is to form a new variable which is a combination of the 
measurements. Figure 8.3 shows four situations in which the multiple measurements 
on each individual could be converted to means, the slope of a line, the area under a 
curve or time to reach a peak. These composite measurements (e.g. the mean across 
time points) could then be analysed using, for example, an ANOVA.

Another alternative would be to use a ‘multivariate’ approach such as a principle 
components analysis, the aim of which is to reduce the dimensionality of the data; or 
a discriminant function analysis to distinguish between individuals. A discussion of 
these techniques is beyond the scope of this book.

Covariance analysis

The aim of covariance analysis is to increase the power of an experiment by taking 
into account a variable which is measured before the start of the experiment and 
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which it is thought might contribute to the outcome of interest. An obvious example 
in work with laboratory animals would be to use data on initial body weights to 
correct some outcome which may be related to body weight, such as the weight of 
various organs. The technique is in some ways similar to blocking. Blocks are dis-
crete factors set up before starting the experiment, but a covariate is a quantitative 
variable, such as initial body weight. In each case the block or covariate is established 
or recorded before treatments are given. The specification in Rcmdr is the same as 
for an RB design except that the covariate is a variable instead of a discrete factor.

A numerical example
Table 8.6 shows data on the effect of two diets (A and B) on the weight of abdom-
inal fat in mice. A t-test fails to show any significant difference in mean fat weight 
between the two diets (P = 0.07). Nor do the two groups differ in initial body weight, 

Table 8.6 Data to demonstrate the analysis of covariance.

Animal Initial BW1 Fat2 Diet

 1 23.03 0.433 A

 2 26.15 0.728 A

 3 27.33 0.875 A

 4 24.31 0.846 A

 5 24.00 0.451 A

 6 26.94 0.800 A

 7 21.51 0.366 A

 8 26.66 0.744 B

 9 23.36 0.691 B

10 21.06 0.593 B

11 24.42 0.913 B

12 24.41 0.922 B

13 25.97 1.143 B

14 23.52 1.007 B

1This was recorded before putting the animals on the test diets. 2Weight of abdominal fat (g). 

BW: body weight (g).

Table 8.7 Analysis of variance table for the covariance example. Response: fat.

DF SS MS F-value P-value

Diet  1 0.16373 0.163728 7.1656 0.021528*

Initial body weight  1 0.25491 0.254909 11.1562 0.006592**

Residuals 11 0.25134 0.022849

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares. *P<0.05, **P<0.01
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recorded before the experiment was started (P = 0.6). However, a covariance analysis 
adjusts the fat weight for initial body weight (Statistics, Fit model, Linear model, fat ~ 
diet + Init.body.wt). Table 8.7 shows the resulting ANOVA table. When initial body 
weight is taken into account there is a statistically significant difference between the 
diets in the mean fat weight (P = 0.022).

Random effects and variance components

Sometimes it would be of interest to quantify different sources of variation. This 
was discussed briefly in Chapter 3 and Figure 3.2 where variation due to days, ani-
mal sizes, samples and analysts was considered. In this simplified example variation 
due to differences between cages, and variation among animals within cages is 
considered. This variation will depend to a large extent on the heterogeneity of the 
environment due to factors such as the level of the cage in a rack and consequent 
exposure to light and heat, and also to factors such as social interactions within each 
cage. Knowledge of these sources of variation may influence the design of a future 
experiment. For example if there is a lot of variation between cages, it is better to 
increase the size of the experiment by adding more cages. But if most of the variation 
is due to individual variation within cages, then it might be better to have more ani-
mals per cage, although this does not take into account possible interactions between 
individuals.

A numerical example
The data in Table 8.8 were extracted from a much larger experiment to illustrate 
this type of analysis. Female rats housed in pairs were maintained on a control diet 
for three months. The cages were rotated both vertically and horizontally every 
week in order to average out environmental differences due to their location in the 
rack. The data were subjected to a one-way ANOVA with the random factor ‘cage’ 
being the independent variable and body weight being the dependent variable. As 
there were eight cages, this resulted in 7 DF for cages and 8 DF for within cages. 
The ANOVA table with the ‘expected mean squares’ is shown in Table 8.9. The 
component of variance associated with cage differences was 149 g and within 
cages it was 179 g, so the within-cage variability was slightly higher than the 
between-cage variability.

In the males on the same experiment (not shown) the between-cage variance 
component was negative. This implies that two rats in a cage differed more in body 
weight than would have been expected had they been assigned to the cages at random. 
This is probably due to social interaction between the rats. Similarly, an extensive 
review of the available literature showed that group-housed mice of both sexes can 
be more variable than singly-housed mice (Prendergast et al., 2014).
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Table 8.8 Numerical example for variance components analysis.

Cage ID Animal ID Final weight

1  1 276.27

1  2 249.21

2  3 221.44

2  4 215.17

3  5 218.08

3  6 234.02

4  7 207.03

4  8 235.20

5  9 246.76

5 10 245.45

6 11 215.40

6 12 226.00

7 13 248.05

7 14 223.88

8 15 234.71

8 16 216.00

Female rats aged 12 weeks. Cages were rotated vertically and horizontally in the cage rack 

each week.

Table 8.9 Variance components model. Response: final weight.

DF SS MS Expected MS

Cage ID 7 3345.8 477.97 σ2 + nσ2
B

Residuals 8 1433.8 179.22 σ2

In this case n (the number per cage) = 2.

S2 =179.

S2
B = (477–179)/2 = 149.

DF: degrees of freedom, SS: sum of squared deviations, MS: mean squares.
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Counts and proportions

Experiments are most powerful when there is a quantitative outcome such as 
body weight, the activity of an enzyme or some measure of behavioural activity. 
However, sometimes the outcome is a binary attribute such as a tumour being 
present/absent, female rats being pregnant/not-pregnant or alive/dead at the end of 
the experiment. In such cases the outcome is usually expressed in terms of counts 
and proportions or percentages and the aim of the statistical analysis is usually 
to compare the outcome, in treated and control groups. In all other respects the 
experiment should be conducted as previously described using randomisation and 
blinding where this is possible.

Sample size can be determined using a power analysis as described in Chapter 11.

Example

In a study of the effects of transportation on pregnancy in F344 strain time-mated 
rats, 148 rats were kept as controls and 150 rats were transported to another site in 
a journey of about 24 h (Pritchett et al., 2013). In the control group, 121 (121/148 = 
81.8%) of the plugged females produced litters whereas in the transported females 
only 105 (105/150 = 70%) produced litters. Is this evidence of an effect of transpor-
tation on the number that produced litters, or could it just be due to chance?

Using R-Commander (Rcmdr), the data on rats littering and not littering (121/27 
in controls and 105/45 in the transported animals) are entered as rows in a ‘contingency 
table’ (Statistics, Contingency tables, Enter and analyse a two-way table). The anal-
ysis then does a chi-squared test of the null hypothesis that rows and columns vary 
independently. This produces a chi-squared 23.67 with a P-value of well below 0.01, 
so the null hypothesis should be rejected at the one percent level and we conclude that 
the transported rats produced fewer litters than the non-transported animals.

A chi-squared test can be used for tables larger than 2 × 2. However, it may be 
inaccurate if the counts in some of the cells of the input table are less than 5. In such 
cases it may be possible to group across treatments.

The ‘Statistics’ tab also offers Fisher’s exact test for analysing 2 × 2 tables. This 
test gives, in this case, a P-value of 0.021 and calculates the odds ratio (an estimate 
of the effect size) with a 95% confidence interval. In this example the odds of being 
pregnant when not transported are 121/27 = 4.48 and the odds of being pregnant 
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when transported are 105/45 = 2.33. So the odds ratio is 4.48/2.33 = 1.92 with a 95% 
confidence interval of 1.08 to 3.45. An odds ratio of one would imply no difference 
between the groups. The output is shown in Table 9.1.

It can be concluded that the chance of not being pregnant is 1.92 times higher in 
animals which are transported than those which are not transported, with the 95% 
confidence interval being as quoted above.

Table 9.1 Output from R-Commander (Rcmdr) in a comparison of the number of 
litters in transported and non-transported female rats.

Data: Table
P-value = 0.0213
Alternative hypothesis: true odds ratio is not equal to 1
95% confidence interval: 1.079232, 3.451855
Sample estimates:
Odds ratio: 1.91645

09_FESTING_Ch 09.indd   95 15-Apr-16   10:05:43 AM



10
Regression and 
correlation

Introduction

Regression and correlation are used to study the relationship between two or more 
variables. In regression there are one or more independent or ‘explanatory’ variables, 
such as dose level, temperature or body weight, often controlled by the investiga-
tor; and a dependent variable which is causally associated with it. Correlation, by 
contrast, studies any association between two variables which may, or may not, be 
causally related.

Linear regression

The main aim in regression analysis is to quantify any linear relationship between 
one or more independent X variables and the dependent Y variable. X can be a factor 
such as a dose level or a measurement variable. When there is just a single X and a 
single Y variable, the regression analysis will determine the best fitting straight line 
in the form Y = a + bX, using a ‘least squares’ procedure, where a and b are constants 
determined from the data in the statistical analysis. In this case a is the value of Y 
when X = 0 and b is the slope of the line when Y is plotted as a function of X. When 
there are two or more independent X variables, then multiple regression analysis is 
used (not discussed here).

An example
Some data on red blood cell (RBC) counts in mice (Festing, 2001) treated with 
chloramphenicol are shown in Table 10.1. The data can be read into R-Commander 
(Rcmdr) in the usual way and plotted to show the relationship between the dose of 
chloramphenicol and RBC counts (Graphs, Scatterplot). The dose is the independent 
or X variable and RBC is the dependent Y (or response) variable. Under ‘Options’ all 
the boxes should be un-ticked except for ‘least squares line’. This will result in the 
best fitting straight line to the data points, as shown in Figure 10.1.
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Table 10.1 Red blood cell (RBC) count (×1012/L) in mice treated with 
chloramphenicol.

Dose RBC Dose RBC Dose RBC

 0 9.60  5 9.27 10 9.61

 0 9.56  5 9.16 10 9.82

 0 9.14  5 9.53 10 9.44

 0 9.20  5 9.44 10 9.29

15 9.81 20 8.82 25 7.83

15 9.83 20 8.24 25 8.07

15 9.83 20 8.18 25 8.45

15 9.40 20 8.10 25 7.77

Data are presented over three columns.

0 5 10 15 20 25

8.0

8.5

9.0

9.5

Dose

R
B

C

Figure 10.1 Plot of red blood cell (RBC) counts as a function of the dose of 
chloramphenicol with the best fitting straight line.

The regression analysis to determine the formula for the regression line is done 
using Statistics, Fit model, Linear regression. The output is shown in Table 10.2.

The section labelled ‘Coefficients’ shows the intercept (a in the formula above) 
as 9.74 and the slope b is –0.055. So the resulting formula for the regression line is 
Y = 9.74 – 0.055X. This can be used to estimate the value of Y for any value of 
X within the range of the X values.

The standard errors, t-values and statistical significances are also given. As 
might be expected, both of these are significantly different from zero. The multiple 
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R-squared, the proportion of the total variation that is accounted for by fitting the 
straight line, is 0.48. This value is quite low.

Figure 10.1 shows that a straight line may not give an adequate indication of the 
relationship between dose and response. It appears as though there is no response 
to chloramphenicol at the lower doses. If at all possible the RBC counts seem to 
increase. But at the two higher doses there is a sharp decline in RBC counts. A curve 
might be a better fit.

A second degree polynomial with the formula Y = a + bX + cX 2 can be used to 
fit a suitable curve. In Rcmdr a new variable is formed by Data, Manage variables 
in the active data set, Compute new variable. The new variable should be named 
(e.g. dose.2) and the formula for it is Dose * Dose. Now the regression analysis 
can be re-done to obtain the best fitting curve. In this case Statistics, Fit model, 
Linear regression. In the Explanatory variables box both dose and dose.2 should 
be checked.

The output (see Table 10.3) shows that R-squared is now 0.74 and dose.2 accounts 
for a significant proportion of the total variation which is explained by the regression 
analysis. The formula for the line is now Y = 9.28 + 0.08X – 0.005X 2, where Y is the 
RBC count and X is the dose. Fitting the square of the dose alone (dose.2) results in a 
reasonably straight line, but an R-squared of 0.66 suggests that it is not quite as good 
as fitting both parameters. R-Commander cannot plot the second degree polynomial 
curve, but it can produce a scatterplot which shows a fitted line with some indication 
of variation, as shown in Figure 10.2

The overall conclusions will depend to a large extent on the purpose of the sta-
tistical analysis. In some cases it is sufficient to show that there is a statistically 

Table 10.2 R-Commander (Rcmdr) linear regression analysis of red blood cell 
(RBC) counts on chloramphenicol dose.

Call:
Lm (formula = RBC ~ Dose, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-0.60310 -0.42181 -0.08606 0.28755 0.90912

Coefficients:

Estimate Std error t-value P (>|t|)

(Intercept) 9.74310 0.18299 53.245 <2e-16***

Dose -0.05481 0.01209 -4.535 0.000163***

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001

Residual standard error: 0.5057 on 22 degrees of freedom (DF).

Multiple R-squared: 0.4831, adjusted R-squared: 0.4596.

F-statistic: 20.56 on 1 and 22 DF, P-value: 0.0001634.
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Table 10.3 Output from a regression analysis fitting a second degree polynomial 
to the chloramphenicol data.

Call:
Lm (formula = RBC ~ Dose2 + Dose, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-0.63836 -0.17680  -0.05779 0.26280 0.54293

Coefficients:

Estimate Std error t-value P (>|t|)

(Intercept) 9.285357 0.165747 56.021 < 2e-16***

Dose2 -0.005493 0.001197 -4.588 0.000159***

Dose 0.082507 0.031181 2.646 0.015108*

Rcmdr uses the convention that 1, 2 or 3 asterisks are shown to indicate significance levels of 

p<0.05, p<0.01 and p<.001

Residual standard error: 0.3658 on 21 degrees of freedom (DF).

Multiple R-squared: 0.7419, adjusted R-squared: 0.7173.

F-statistic: 30.18 on 2 and 21 DF, P-value: 6.673e-07.

Y = 9.28 + 0.08X – 0.005X2

significant relationship between the independent and dependent variables, quantified 
by R-squared. In other cases it may be useful to be able to predict the value of Y for 
a given value of X using the formula Y = a + bX with the estimates of a and b. It may 
also be useful to know whether there is a non-linear response to the dose, as shown 
in this example.

Correlation

Correlation is used to quantify the linear relationship between two variables, without 
the assumption of any causal relationship between them. It should be treated with 
some caution as there is a danger of assuming a causal relationship.

The ‘product–moment’ or Pearson correlation is the one (among several) which 
is most widely used. The correlation can range from +1, in which there is complete 
agreement between the two variables, through to 0 in which they are not associated 
to –1 in which there is complete disagreement with the highest value in one of the 
variables being the lowest value in the other. Note that Pearson’s correlation coef-
ficient assumes that both variables are normally distributed; if this is not the case 
other, such as Spearman’s or Kendall’s, coefficients (which are based on ranks and 
concordant pairs, respectively) should be used.
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An example
Table 10.4 shows liver and mean of the left and right kidney weights in 18 geneti-
cally heterogeneous mice. The relationship is shown graphically in Figure 10.2 (in 
Rcmdr Graphs, Scatterplot). Clearly there is a positive relationship between the two. 
Such plots can be useful in screening data to identify outliers (one point in this figure 
is an outlier) when two or more outcomes are measured in an experiment. Any found 
can subsequently be checked to make sure that they are not mistakes (there was no 
evidence of a mistake in this case). Note that no regression line has been drawn. 
There are two possible lines; the regression of liver weight on kidney weight and vice 
versa. These give different lines. So when presenting a correlation it is best either to 
give no line or both lines.

Could this correlation be attributed to chance? The result of a test for correlation 
(Statistics, Summaries, Correlation test) is given in Table 10.5. The correlation is 
0.66, with a 95% confidence interval of 0.28 to 0.86 and it is highly significant 
(P = 0.002), so is unlikely to be due to chance sampling variation. Rcmdr gives two 
alternative correlations: Spearman’s and Kendall’s correlation coefficients. These are 
used with skewed data sets.

Table 10.4 Liver and mean kidney weights (g) in genetically heterogeneous 
female mice.

Animal Liver Kidney Animal Liver Kidney Animal Liver Kidney

1 0.99 0.29  7 1.09 0.29 13 0.98 0.24

2 1.19 0.34  8 0.83 0.25 14 0.93 0.24

3 1.28 0.28  9 1.03 0.29 15 0.80 0.26

4 1.19 0.32 10 1.01 0.24 16 0.99 0.29

5 1.06 0.29 11 0.9 0.26 17 1.03 0.26

6 1.04 0.28 12 0.99 0.26 18 0.86 0.24

Table 10.5 Test of the correlation between mean kidney weight and liver weight in 
female mice.

Pearson’s product–moment correlation
Data: kidneys and liver
t = 3.5191, DF = 16, P-value = 0.002846
Alternative hypothesis: true correlation is not equal to 0
95% confidence interval: 0.280020, 0.861678
Sample estimates:
Correlation: 0.6605362
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Figure 10.2 Scatter plot showing relationship between mean kidney weight and 
liver weight in genetically heterogeneous female mice. There is one outlier.
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The determination of 
sample size

Introduction

If an experiment is unnecessarily large, then time and scientific resources will be 
wasted and animals may suffer unnecessary distress. By contrast, if the sample size 
is too small, effects which are of biological or clinical importance may be missed. 
Unfortunately, there is no simple way of determining the optimum sample size, 
which depends on several factors, some of which are unknown at the time the exper-
iment is planned. According to one authority (Cox and Reid, 2000), ‘except in rare 
instances…, a decision on the size of the experiment is bound to be largely a matter 
of judgement and some of the more formal approaches to determining the size of the 
experiment have spurious precision’.

Two methods of estimating a suitable sample size are discussed in this chapter: 
power analysis and the resource equation. Power analysis is most appropriate for 
relatively simple applied experiments, where a good estimate can be made of the 
standard deviation (SD) of the characters of interest and there is good information on 
the magnitude of a response which would to be of clinical or scientific importance if 
it were to be found.

Power analysis is the method used for clinical experiments where a new treat-
ment may only be worth developing if, it works substantially better than existing 
treatments. It is difficult to apply with complex experiments and should not be 
used unless there is a good estimate of the SD of the character of interest and it is 
realistically possible to estimate an effect size (ES) that is likely to be of scientific 
importance (see below).

Note that a power analysis is not usually an objective way of determining sample 
size because it requires an estimate of the ES likely to be of clinical or scientific 
importance, which usually depends to a large extent on judgement.

By contrast, the resource equation method is more objective and is usually more 
suitable for fundamental studies with more complex designs where there is little or 
no baseline information and the main interest is in determining whether there is any 
treatment response of a magnitude which might justify further investigation.
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Power analysis

The aim of power analysis is usually used to estimate the sample size needed to 
detect the smallest response (difference between groups) which the investigator 
considers to be of biological or clinical importance. It depends on a mathematical 
relationship between six variables discussed below. If five of these are specified, 
the sixth variable can be calculated. This method can be used both for quantitative 
(measurement) and qualitative data.

Where an experiment involves measuring several different dependent variables 
such as body weight, haematological parameters and blood pressure, it is necessary 
to decide which of these characters is of most importance and use this to determine 
the sample size. The six variables involved are as follows:

1. The effect size of biological or clinical interest
A small difference between the control and the treated group, i.e. a small ES, may not 
be of much scientific/clinical interest, even if it is statistically significant. However, a 
large response (i.e. ES) probably would be of interest. The ES used in a power analy-
sis is the cut-off between these two situations. It is the minimum size of the response 
that is judged to be of clinical or scientific importance. It is not an estimate of the 
actual magnitude of the response.

In some cases it is difficult to estimate an ES. An alternative approach is to spec-
ify a sample size that seems reasonable and practical (say 10 animals per group). 
The formulae can then be used with the other variable being specified to estimate 
an ES that the experiment is, with a specified probability, capable of detecting. The 
investigator could then decide whether that ES would be acceptable. If not, another 
iteration using a different sample size can be carried out.

For categorical variables the ES is the difference likely to be of biological/clinical 
interest in percent responders between two groups. For example, if 50% of the control 
group is expected to show some qualitative effect, such as a tumour, sample sizes needed 
to detect a reduction to, say, 40%, 30% or 20% in the treated group can be estimated for 
a given level of power. Several iterations of the calculations may be needed to arrive at 
an answer in which the numbers are reasonably practical and of scientific interest.

2. The standard deviation
The estimated sample size is heavily dependent on the magnitude of the SD. For 
continuous characters such as body weight or enzyme activity, an estimate of the SD 
has to come from a previous experiment either carried out by the investigator or from 
the literature. If this is not available, then a pilot study may be necessary to provide 
an approximate estimate. It may be worthwhile to do a ‘best case’ and a ‘worst case’ 
calculation based on the lowest and highest of the available estimates of the SD to 
determine the effect of this on sample size estimates.
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For discrete characters such as dead/alive, the SD is a function of the proportion 
of animals that are affected, so there is no need to specify it.

3. The significance level
Usually, a significance level of α = 0.05 (5%) is used, though other levels such as 
α = 0.01 (1%) could also be used. However, this would mean that the sample size 
would have to be larger, otherwise the power of the experiment will be reduced.

4. The power of the experiment
The power of the experiment is the probability of being able to detect a specified 
effect at a specified significance level. The general aim should be for experiments to 
be powerful, as these will have a high chance of detecting an effect, if it is present. 
Somewhat arbitrarily, the power is usually set at somewhere between 80% and 90% 
(0.8 to 0.9). The higher the power, the larger the sample size needed. But power does 
not increase linearly with an increase in sample size, rather it follows a curve of 
diminishing returns; so specifying a very high power, such as 99%, may require an 
unfeasibly large number of animals. This would only be justified if the consequences 
of failing to detect an effect would be serious.

5. The alternative hypothesis
The usual null hypothesis is that there are no differences among treatment means, 
with the alternative being that there are differences, but the direction of response is 
not specified. For example, body weight might be changed in either direction. This 
leads to a two-sided significance test. However, if a compound is being tested for 
toxicity, for example, it will be either toxic or non-toxic but it is unlikely to have 
negative toxicity, so a one-sided test should be used. Of course a toxic substance may 
increase or decrease body weight, so in that case a two-sided test might be relevant.

6. Sample size
In most cases it is the sample size that is to be determined, with all the other variables 
being specified. However, as noted above, the sample size could be fixed and the 
power or the effect size (ES) of the proposed experiment could be estimated. This 
situation can also arise when only a limited number of animals are available and the 
aim might be to determine what ES could be detected or what power the experiment 
would have for specified levels of the other variables.

The standardised effect size (SES) or Cohen’s d
The effect size(ES) when divided by the standard deviation (SD), i.e. ES/SD, is 
known as the SES or Cohen’s d. Power analysis was developed by Jacob Cohen 
and SES is explained in his 1969 book and later editions (Cohen et al., 1988). 
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It is a signal/noise ratio. A common concern of researchers who perform power 
calculations is that they cannot predict what the SD would be (although also see 
‘2. The standard deviation’ above). The advantage of the SES is that it allows 
researchers to design their experiment to detect a chosen signal/noise ratio (which 
has incorporated the SD). This is easier to conceptualise. Do we need to detect 
a large SES or a small one (see Cohen, 1988 for SES conventions in the behav-
ioural sciences)? For clinical studies Cohen suggested that values of ‘d’ of 0.2, 0.5 
and 0.8 would represent a small, medium or large treatment effect. For laboratory 
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Figure 11.1 Plot of sample size as a function of standardised effect size assuming 
a two-sample t-test, a significance level of 0.05 and a two-sided test. Circles = 80% 
power, rectangles = 90% power.
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Figure 11.2 Plot of sample size as a function of standardised effect size assuming 
a two-sample t-test, a significance level of 0.05 and a one-sided test. Circles = 80% 
power, rectangles = 90% power.
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animals it is probably more realistic to set these as 0.5, 1.0 and 1.5. The required 
sample sizes can be seen in Figures 11.1 or 11.2. For example, if an experiment 
with two groups is planned to be able to detect a medium ES with d = 1.0, then the 
experiment would require slightly fewer or slightly more than 20 animals in each 
group, depending on the required power.

Estimating sample size with two treatment groups
Figures 11.1 and 11.2 show sample size as a function of SES for 80% and 90% 
powers, a 5% significance level, and one- or two-sided tests, respectively. These are 
probably accurate enough for most purposes given that the SD is being estimated 
from a previous study. Note that large numbers of animals are needed to detect small 
effects, with an SES below half an SD in magnitude.

Many software packages are available for power analysis sample size calcula-
tions including R and Rcmdr. But in this case researchers need to write a command 
rather than use a menu. In Rcmdr for a two-sided test with an 80% power and 5% 
significance level the following command (all with lower case letters) is written in 
the ‘top output box’, with the ‘hash’ marks substituted by appropriate numbers (and 
power and sig.level altered if desired); ‘delta’ is the ES and ‘sd’ is the standard devi-
ation. This is for a two-sided test (the default).

power.t.test(delta=##, sd=##, power=0.8, sig.level=0.05)

Once the command is written and the hash marks are replaced with the chosen val-
ues, the command is marked in the usual way and the ‘submit’ button is clicked.

If the aim is to estimate the ES for a given value of n, with power and sig.level as 
above, then the command is:

power.t.test(n=##, sd=##, power=0.8, sig.level=0.05)

If n = 10 and the sd is 0.5 then delta, the ES, is 0.66, as shown below

power.t.test(n=10, sd=0.5, power=0.8, sig.level=0.05)

Two-sample t-test power calculation:

n = 10

delta = 0.6624728

sd = 0.5

sig.level = 0.05

power = 0.8

alternative = two.sided

Note: n is the number in *each* group
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For a one-sided test the command below is used, again with the appropriate numbers 
substituted, and the power and significance levels altered appropriately.

power.t.test(delta=##, sd=##, power=0.8, sig.level=0.05, alt=‘one.sided’)

Or to estimate the ES for a given n, replace delta=## with n=## and replace the hash 
marks with appropriate numbers.

An example
Chapter 4 uses a fictitious example of the effect of running in an exercise wheel on 
learning ability in mice as an example of a completely randomised (CR) design. The 
mean learning score in the control mice was 246 units and in the Marathon mice it 
was 221 units, giving a reduction of 25 units. The SD was 10.4 units. The observed 
SES was therefore 25/10.4 = 2.40 SDs.

Suppose an experiment is now planned to determine the effect of a psychoactive 
drug on learning ability using the same methods of measuring learning ability and 
similar mice but with the drug instead of the exercise wheel, what would be an appro-
priate sample size?

It is assumed here that there will only be two groups. The first problem is to 
establish the minimum ES likely to be of scientific interest. This has to be deter-
mined somewhat subjectively. Based on the previous study, would an ES of 10 units 
be of scientific/clinical interest? If so, with an SD of 10.4 the SES would be 10/10.4 
= 0.96, which could be rounded to 1.0 SD. In this case a one-sided test would be 
appropriate as it is unclear what negative learning would be. With a one-sided test, 
according to Figure 9.2 about 14 mice per group would be required to detect a 10 
unit response with an 80% power or 20 mice for a 90% power. Using Figures 11.1 
and 11.2 it is easy to find the consequences of varying the ES. Greater accuracy is 
not needed in view of the uncertainty in estimating the SD and ES. But the formula 
below can be used if this is preferred.

power.t.test(delta=10, sd=10.4, power=0.8, sig.level=0.05, alt=‘one.sided’)

The resulting output is:

Two-sample t-test power calculation:

n = 14.10248

delta = 10

sd = 10.4

sig.level = 0.05

power = 0.8

alternative = one.sided

Note: n is the number in *each* group

In this case n could justifiably be rounded down to 14 mice per group.
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Comparing two or more proportions
A power analysis can be used to determine sample size for comparing two propor-
tions provided there is some prior information on the incidence of the effect in the 
control group. This is specified as a proportion ‘p1’. The ES likely to be of clinical 
or scientific importance is specified by choosing the percent in the treated group, 
‘p2’. Suitable sample sizes can then be determined by typing the command below 
(adjusting p1 and p2) into the ‘top output box’ in Rcmdr. This should then be marked 
and submitted. The command, below, shows the sample size when the control group 
is expected to have an incidence of 15%, and where the aim is to be able to detect an 
effect of 30% or more, if it is present.

power.prop.test(power=0.90,p1=0.15,p2=0.30)

The output is:

>power.prop.test(power=0.90,p1=0.15,p2=0.30)

Two-sample comparison of proportions power calculation:

n = 160.7777

p1 = 0.15

p2 = 0.3

sig.level = 0.05

power = 0.9

alternative = two.sided

Note: n is the number in *each* group

So this would be a large experiment with over 300 animals in total.

More complex situations
With three or more treatment groups it becomes more difficult to specify the ES of 
clinical or scientific importance. One strategy could be to base the calculations on the 
control and top dose groups. This would slightly overestimate the required sample 
size because there would be extra information on inter-individual variation in the mid-
dle dose group(s). Remember that great precision is not possible in power calculations 
because they depend on estimates of the SD and ES which may not be accurate.

It is also possible to do a power analysis for a one-way analysis of variance 
(ANOVA). There is a command in R (and Rcmdr):

power.anova.test(groups = NULL, n = NULL, between.var = 
NULL, within.var = NULL, sig.level = 0.05, power = NULL)

In this case all except one of the NULL values (usually n = NULL if sample size is 
to be estimated) will be filled in (exactly as shown), and the value being estimated 
should be deleted from the command.
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As with the two-group case some prior information is needed. For example, if 
another experiment involving learning ability in mice is proposed, the ANOVA for 
the learning experiment in Chapter 5 could be used as a template. In such an experi-
ment the ‘between.var’ is the treatment sum of squares 2861, and the ‘within.var’ is 
the residual sum of squares 2614, the number of groups is 3 and the power could be 
specified as 0.8. The command is therefore:

power.anova.test(groups=3,between.var=2862,within.
var=2614,sig.level=0.05, power=0.8)

Putting this information into the top box in Rcmdr, marking it and submitting it gives 
the output. 

Balanced one-way ANOVA power calculation:

groups = 3

n = 5.53158

between.var = 2862

within.var = 2614

sig.level = 0.05

power = 0.8

Note: n is the number in each group

In this case n would be rounded up to 6.
If it were decided to do another learning experiment, but this time with four treat-

ment groups, the command could be tweaked to replace groups = 3 with groups = 4. 
This would give an estimate of n = 4.42. This would need to be rounded up to five 
mice per group.

If a smaller ES was thought to be of scientific importance, then the ‘between.var’ 
could be reduced. If it was reduced to the same as the ‘within.var’ and with three 
groups, then the required sample size would be 5.9 mice per group, which would be 
rounded up to six mice per group.

For even more complex experiments such as randomised block (RB) and facto-
rial designs the resource equation method may be somewhat easier to use.

The resource equation method

This method (Mead, 1988) is useful for experiments which are to be analysed by the 
ANOVA. It can be used when the power analysis method is either not possible or 
impractical (e.g. where there is no information on the SD, where the ES cannot real-
istically be estimated, where the experiment has a complex design, or where there 
are many outcomes, such as when the outcomes are haematology and biochemistry).
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110  The design of animal experiments

The method depends on the law of diminishing returns. Adding one more 
experimental unit when the experiment is small can usefully increase power, but 
adding one more experimental unit to an experiment which is already large may 
be of little benefit.

The main features of the resource equation method are:

1. It is easy to use even for complex experiments where a power analysis would be 
difficult.

2. It is only appropriate for experiments producing quantitative data which can be 
analysed by ANOVA or the t-test.

3. It does not require an estimate of the SD or the ES of biological interest.
4. The power, significance level and alternative hypothesis do not need to be 

specified.
5. It works by ensuring that there is a reasonably good estimate of the pooled SD, 

against which the differences in means are to be measured.

The resource equation is: E = N − T − B, and 10 < E < 20, where E is the error degrees 
of freedom, N is the total degrees of freedom (i.e. the total number of experimental units 
minus one), T is the treatments degrees of freedom (the number of treatment combinations 
minus one), and B is the blocks degrees of freedom (the number of blocks minus one).

However, a good case can be made for leaving the blocks degrees of freedom out 
of the equation because although blocking takes degrees of freedom from the error 
term it nearly always increases the power of the experiment. So in this case:

E =  (total number of animals) − (number of treatment groups), and E should be 
between 10 and 20 (i.e. 10 < E < 20)

5

2

3

4

5

6

10 15 20 25

Degrees of freedom

S
tu

d
en

t’
s 

t

Figure 11.3 The value of Student’s t for 2−25 degrees of freedom (DF). Note that 
t can be considered to be a measure of uncertainty in an estimate of the standard 
deviation. This decreases rapidly up to about 10 DF but going beyond 20 DF does not 
substantially reduce the level of uncertainty. So the resource equation method suggests 
that experiments should be designed to have 10−20 DF for the error (residual) term.
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If E is less than 10, increasing the numbers would lead to worthwhile returns. If 
it is substantially more than 20, diminishing returns will result in resources being 
wasted. This can be seen from the shape of the curve of the 5% critical value of 
the Student’s t (see Figure 11.3) which can be regarded as a measure of uncer-
tainty in the estimate of the SD. Increasing the error degrees of freedom (E) from 
one to 10 leads to a substantial reduction in the level of t which would be declared 
statistically significant. However, increasing E much beyond 20 hardly alters the 
critical value of t. Therefore the experiment is approximately optimised if E is 
between 10 and 20.

This method should be used only as a guide, just as with the power analysis. 
Some freedom should be allowed to account for special situations. It might some-
times be acceptable for E to be as low as 6 when sufficient numbers of animals are 
not available, provided it is also realised that the experiment will then lack power. 
So it may result in a false-negative result. For in vitro studies, which are inexpensive 
and do not involve live animals, E can be substantially higher than 20. When the aim 
of the experiment is accurate estimation of some parameter such as the magnitude of 
a treatment effect, other methods of sample size determination may be used. Genetic 
linkage studies are a good example, where the interest is not so much whether two 
loci are linked, but how closely they are linked. This may involve large numbers of 
animals if the linkage estimate is to be accurate.

Example 1
A CR experiment is proposed with five treatment groups and six rats per group so 
E = 30 − 5 = 25. So the group size is slightly too large. With four rats per group 
E = 20 − 5 = 15, which is in the middle of the suggested range.

Example 2
A CR factorial experiment is proposed with three treatments and both sexes with five 
rats per group. So there are six groups of five rats = 30 rats in total, and six groups so 
E = 24. So the sample size would be marginally too large. Four rats per group would 
give E = 24 − 6 = 18.

Example 3
An experiment is proposed with both sexes and four treatments done as an RB design 
with three blocks. The number of animals is 2 (sexes) × 4 (treatments) × 3 (blocks) = 
24 animals in total. The experiment has 2 × 4 treatments. Here E = 24 − 8 which 
is 16. So this is an acceptable sample size.
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12
Seventeen steps in 
designing a randomised 
controlled animal 
experiment

1. Formulate the question to be 
answered by the experiment

The question must be specific such as ‘will this drug alter blood pressure in labora-
tory rats?’, and it must be possible for it to be answered by the experiment.

2. Decide which animals to use  
(see Chapter 2)

In this case the question specifies that rats are to be used, but gender, strain(s), and 
age(s) will also need to be specified.

3. Identify the ‘experimental unit’

The experimental unit is ‘the smallest division of the experimental material such that 
any two subjects can receive different treatments’. It is the unit of randomisation and 
of the statistical analysis. If animals within the same cage cannot receive different 
treatments, then the cage of animals will be the experimental unit, and the statistical 
analysis should use the mean of the animals within a cage. Treated and control exper-
imental units must be intermingled in the environment.

In a crossover experiment (see Chapter 7), the experimental unit is often the 
animal or a cage of animals for a period of time. In a split plot experiment (see 
Chapter 8) there will be two different types of experimental units. An experiment 
may involve some cages of males and some of females. Within each cage there may 
be two rats which can receive different treatments. Thus, for comparing the males 
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and females the cage is the experimental unit and the analysis will be based on cage 
means, and for comparing the treatments, and any interaction between gender and 
treatment the individual rat is the experimental unit.

4. Minimise inter-individual 
variability (see Chapter 3)

Sample size and statistical power depend on the uniformity of the experimental material. 
Uniformity can be achieved by choosing animals of the same sex, a similar age and/or 
weight and from the same source. The use of genetically uniform, isogenic (i.e. inbred or 
F1 hybrid) animals is recommended (see Chapter 2). Specific pathogen free (SPF) rats 
and mice, which are free from clinical and subclinical diseases should always be used 
because infection increases variability and may lead to an atypical response. Animals 
housed in an enriched environment tend to be more uniform than those housed in 
un-enriched conditions. Social animals should be housed in groups for welfare reasons 
(see Directive 2010/63/EU), even though this may increase variability. Randomised 
block designs can increase uniformity by matching animals in each block and elimi-
nating some environmental variability. Each block will also fit into a small space, so 
minimising environmental variation. The use of RB designs is strongly recommended.

5. Chose independent variables

The independent variables or ‘factors’ are the variables to be studied. Often one 
factor will be designated ‘treatment’ with at least two levels, one of which may be 
called a ‘control’.

A second factor ‘gender’ could have two levels, ‘female’ and ‘male’. If the exper-
iment has two or more factors (e.g. treatment and gender) it is said to have a factorial 
design (see Chapter 6). Factorial designs provide extra information, often at little 
extra cost. Such designs can lead to experiments with many treatment groups, yet 
they remain relatively easy to analyse and interpret.

6. Choose the dependent variables 
(characters or outcomes)

These are the ‘characters’, ‘traits’ or ‘outcomes’ which are to be measured/counted. 
This is usually specified in the question being asked. So in the above question, blood 
pressure is the outcome of interest. Additional outcomes may also be measured. In 
some experiments multiple outcomes such as haematology and clinical biochemis-
try are measured. Gene microarray data may involve thousands of observations per 
experimental unit. This type of data will require specialised statistical analysis, not 
covered in this book.
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114  The design of animal experiments

Quantitative (measurement) data are usually more informative than categorical 
data. However, the main design principles remain the same whatever the nature of 
the data that are to be collected. Be aware that there may be problems in the separate 
statistical analysis of many outcome variables due to the number of statistical tests. 
It may lead to some false-positive results.

7. Decide whether a pilot study is necessary

A pilot study is recommended if the investigator and/or staff are unfamiliar with the 
species and/or techniques which are to be used.

8. Choose the experimental design

The main options are:

A completely randomised design (see Chapter 5)
With this design the treatments are allocated to the experimental units at random 
without taking into account the individual characteristics. Animals and their environ-
ments should be as uniform as possible. Each cage will need to contain two or more 
identically treated animals to comply with EU Directive 2012/63/EU; and the cage, 
not the animal, will be the experimental unit.

If animals receiving different treatments can be housed together, then a ran-
domised block design (see below) is suggested.

A randomised block design (recommended,  
see Chapter 7)
In this design the experiment is split up into a number of mini-experiments or blocks, 
usually with one experimental unit on each treatment. Each block is repeated several 
times. It is easier to manage, is usually more powerful, and is less likely to lead to 
bias than the completely randomised design.

Two alternatives are suggested depending on whether animals receiving different 
treatments can be housed in the same box.

Animals housed together cannot receive different 
treatments
In this case animals would need to be housed at least two per cage for welfare and 
legislative requirements but housing more than two animals together is inefficient in 
terms of experimental design but may be considered for welfare reasons (see point 
12 below). The cage will be the experimental unit. Each block will consist of n cages, 
where n is the number of treatments. The number of blocks (sample size) needed can 
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be estimated using the resource equation method, or a power analysis if some previ-
ous data are available. If both sexes are to be included, then a 2 × t factorial design 
will be needed where t is the number of treatments.

Animals housed together can receive different 
treatments
In this case the experimental unit is the animal and each cage will be a block with n 
animals of the same sex, where n is the number of treatments. If both genders are to 
be included then half of the cages should be males and half females. This is a split 
plot design which requires a slightly more complex statistical analysis, as discussed 
in Chapter 8.

Other designs (see Chapter 8)
These include Latin square, crossover, and sequential designs. Other designs are 
important in special circumstances.

9. Determine a suitable sample 
size (see Chapter 11)

An experiment needs to be large enough to detect any scientifically important treat-
ment response, but not so large that resources and animals may be wasted. Two 
methods are available.

The power analysis
This is most suitable for large, simple, expensive experiments such as clinical trials or 
animal studies just prior to clinical trials. It can be used both for measurement and cat-
egorical data. There must be a good prior estimate of the standard deviation and it must 
be possible to make a sensible estimate of the minimum size of response likely to be of 
interest. It is less useful for fundamental studies where there is no good information on 
variability and/or it is difficult to determine an appropriate effect size. However, a deci-
sion can be made about the minimum standardised effect size (SES) sought. It is also less 
useful for complex experiments with several treatment groups and a factorial arrange-
ment of treatments because in such circumstances it is difficult to specify an effect size.

The resource equation
This method is suitable for complex smaller experiments with a measurement outcome, 
particularly where there are many treatment groups, such as in a factorial design.

Assuming that a randomised block design is to be used, Table 12.1 shows the 
minimum number of blocks for various numbers of treatments in order to have a rea-
sonable number of error degrees of freedom. For example, if there are four treatments, 
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then five blocks would provide 12 degrees of freedom for the error term. The treatments 
could be a 2 × 2 factorial with two treatments and both genders for instance. The 
experiment would need 40 animals if the cage is the experimental unit but only 20 
animals if the animal is the experimental unit. In this latter case it would not be 
possible to include both genders without more blocks.

10. Randomise the treatments to the 
experimental units (see Chapter 3)

For a completely randomised design the experimental units should be numbered 1 
to n (the total number of experimental units), then treatments should be assigned to 
them at random, possibly using EXCEL as explained in Chapter 3. This randomisa-
tion is done in the office, not by physical randomisation in the animal house. Note 
that the treatments should be in a random order with respect to the experimental 
unit number.

Table 12.1 Suggested minimum sizes (according to the resource equation) of 
randomised block designs for 2−10 treatments.

No. of 
treatments

No. of 
blocks1

Error 
DF

Total 
DF

No. of 
animals2

Factorial 
experiment?3

Possible 
split plot4

 2 10 10 19 20 – Yes

 3  6 10 17 18 – Yes

 4  5 12 19 20 2 × 2

 5  4 12 19 20 –

 6  3 10 17 18 2 × 3

 7  3 12 20 21 –

 8  3 14 23 24 2 × 4, 2 × 2 × 2

 9  3 16 26 27 3 × 3

10  2  9 19 20 2 × 5

1A block is either a cage if the animals within it can receive different treatments (so are the 

experimental units), or a group of cages with one animal per cage and one cage on each 

treatment.

2This assumes that the animal is the unit. If two animals receiving the same treatment must be 

housed together, to conform with Directive 2010/63/EU, the number of animals needed must 

be doubled.

3Possible factorial layouts. E.g. 2 × 2 could be two treatments and two genders.

4At least six blocks are needed if the main plot treatment effect is to be reasonably well 

estimated.

DF: degrees of freedom.
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With a randomised block design randomisation is done separately for each block 
as is also explained in Chapter 3.

11. Plan the statistical analysis (see 
Chapter 4 and subsequent chapters)

The experiment and the statistical analysis should both be planned at the same time. 
If necessary, a statistician should be consulted at this planning stage, well before any 
data have been collected. Each experiment should be analysed before starting the 
next one so that any new knowledge can be incorporated as the project progresses.

12. Refinement

Consider ways in which pain and discomfort can be minimised. Enriched housing, 
humane endpoints, anaesthesia and analgesia should be discussed with the animal 
house veterinarian, the animal house staff and others concerned with animal welfare.

13. Check availability of resources

Ensure that good facilities (such as space, cages and other equipment) and suitably 
trained staff are available, that the required animals can either be bred in-house or 
purchased from a commercial supplier (purchased animals may need to be quarantined) 
and that sufficient funds are available to carry out the project. If special apparatus is 
required ensure that this will be available.

14. Ensure that all legal aspects are covered

The animal house director, investigators and staff who are directly involved in the 
project need to have all the necessary legal authority to proceed with the study.

15. Protocols and standard 
operating procedures (SOPs)

SOPs and protocols should be prepared and discussed with the staff. A diary with 
notes of any unexpected events should be kept. The reasons for the loss of any exper-
imental units (animals) should be recorded. Decide how the data will be collected 
and stored prior to the statistical analysis. The ARRIVE guidelines can be used as a 
checklist before the experiment is started.
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If the experimental protocol requires repeated doses then care needs to be taken 
to avoid mistakes. Possibly two staff should be involved, cross-checking each other. 
Cage labels could be colour-coded to the treatment. These would be removed prior 
to measuring the outcome so as to ‘blind’ the staff to the treatment.

16. Prepare a flow chart showing the  
main actions required during the 
course of the experiment

An example for the fictional experiment described in Chapter 5 is given in Figure 12.1. 
Preparation of such a chart is useful for identifying any factors that have not previ-
ously been identified (see also EDA in https://eda.nc3rs.org.uk/). For example, the 
need for a room with changed lighting times, need for weekend access by the inves-
tigator and the potential errors associated with the probable need to measure learning 
ability over a period of several days. Clearly a randomised block design should have 
been considered.

The effect of wheel
running on learning
ability in mice.
Experiment planned as
a CR design with 3 
treatments: None,
Moderate, Marathon.
One mouse/cage. 
Nine replications.
Outcome measured is
learning score.

Randomisation: 
Cages fitted with removable
wheels numbered 1–27
and placed in the animal
house in numerical order.
Treatments randomised
to the cages using EXCEL
(or other). Coloured labels
applied to cages to identify
treatments during treatment
period 

Acquire mice (strain,gender?).
Visual check for health.
Weigh and place one
mouse per cage.
Change lighting to come
on at, say, 05.00hrs. and
off at 13.00hrs. Allow mice
to acclimatise for two (?)
weeks.

Experimental day 1.
Starting at 14.00, place 
exercise wheels in all
cages. (fixed in the
control group).
At 14.30 remove wheels
from control and moderate
groups. At 17.00 remove
wheels from marathon group.
Repeat for 20 more days.  
(investigator to arrange 
weekend access)

Experimental day 22.
Remove labels showing 
treatment assignment.
At 17.00 start measuring 
learning ability.
(time/mouse taken from 
previous experience.
This may take more than
one evening.
(Note that a RB design
would have been better
than the CR design
at this stage).
Following measurement
weigh then sacrifice the
mice using an approved
method. Consider removal
and fixation of brains.

Transfer learning data to 
EXCEL, screen it for
possible errors and
analyse it using a 1-way
ANOVA following check on
usual assumptions. 
Report means and SDs.
Check for association
between learning ability,
initial and final weight,
and treatment.
Prepare report. 

Figure 12.1 Example of a flow chart for the wheel running/learning experiment 
described in Chapter 5. CR: completely randomised, RB: randomised block, 
ANOVA: analysis of variance, SDs: standard deviations.
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17 Submit the proposals to the local 
ethics committee (IACUC in the USA)

Leave ample time for the ethical review process to take place and to make any neces-
sary changes to the project suggested by the committee or individuals.

And finally, carry out the experiment, comforted by the thought that you have 
done everything that you could to ensure that it is well designed, justified, and worth-
while. Some of the aspects that should be taken into consideration when reporting the 
results of the experiment are addressed in the next, and concluding, chapter.
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Reporting the results

Any well designed non-trivial experiment should be publishable whether the results 
are negative or positive. This is partly to avoid unnecessary repetition of negative 
studies and partly because if the results are later used in a meta-analysis both positive 
and negative studies are needed. If several studies indicate a positive, but not statis-
tically significant, effect then a meta-analysis may show that the combined effect is 
likely to be real. It is the scientific quality and validity of the work rather than the 
nature of the outcome which should be considered.

The ARRIVE guidelines (Kilkenny et al., 2010) provide a checklist to ensure 
that no important information about the experiment(s) is/are omitted. Table 2 of 
these guidelines is given in Table 13.1. The following highlights some points worth 
remembering when publishing.

Presentation of the results

The aim of a manuscript is to show the results as clearly and accurately as possible. If 
the paper is presenting the results from more than one experiment, then these should 
be individually numbered so that it is clear which set of results comes from which 
experiment.

Means and proportions should usually be presented with some measure of var-
iation such as standard deviation (SD), standard error of the mean (SE or SEM), or 
confidence interval (CI). In order to avoid confusion, it has been suggested that the ± 
symbol should be abandoned and means should be presented as, for example, ‘mean 
9.6 (SD 2.1) units’.Where possible plots showing individual data points should be 
shown in preference or in addition to error bars.

Specifying the variation

The standard deviation
This provides an estimation of the variation among individual experimental units 
within a group. It does not vary with the numbers in each group. It is used to construct 
various types of error bars. With reasonable sample sizes the SD can be calculated 
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124  The design of animal experiments

for each group. However, randomised block designs only provide a pooled estimate 
of the SD obtained from the square root of the error mean square in the analysis of 
variance (ANOVA) table. With all designs, residual plots (see Chapter 4) should 
have been used to indicate whether the variation is approximately the same in each 
group (assuming quantitative data). If it is, then again the best estimate of the SD is 
the pooled estimate obtained from the error mean square in the ANOVA, and there 
seems to be little point in quoting a different SD for each mean. However, if the SDs 
differ among groups, this should be clearly indicated. In such cases the data may 
need to be transformed to a different scale before statistical analysis.

Standard error of the mean
The SE is an estimation of the variation among means. It is the SD divided by the 
square root of n, the number in each group. The SEM × 1.96 is known as the margin 
of error. It is one arm of an approximate 95% confidence interval (CI) for the mean.

Standard error of the difference between two means
This is estimated as the square root of the mean of the sum of the variances of each 
mean, i.e. √ (s1

2/n1 +s2
2/n2).

95% confidence interval for a mean
A 95% confidence interval (CI) is the interval within which 95% of means would be 
expected to lie if the experiment were to be repeated many times.

If the CI includes zero, then the mean of a group, or difference between two 
groups, is not significantly different from zero at the specified level. The margin of 
error is one arm of the CI. It is approximately 1.96 × SEM.

Least significant difference
This is (Student’s t) × (the standard error of the difference between two means), 
where t has the appropriate number of DF and significance level. When used for 
error bars, it has the advantage that if the bars overlap then the differences will not be 
significantly different and if they do not overlap the differences will be statistically 
significant.

Proportions and percentages
These should also be presented with some estimate of their reliability such as an 
standard error (SE) or, preferably, a confidence interval (CI), or showing the results 
of a statistical test to indicate which are significantly different. The variance of a 
proportion is n p q where n is the number of observations and p and q are the number 
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Reporting the results  125

of positive and negative counts, respectively. For example, in a group of n = 50 
C57BL/6 mice, if the proportion having chewed whiskers is p = 0.2 (20%), then the 
variance of this is npq or 50 × 0.2 × 0.8 = 8 and the SE is the square root of 8 which 
is 2.82.

P-values
Exact P-values should be quoted in preference to P < 0.05 or the use of asterisks 
unless the P-values are very low such as P < 0.001. Note that P = 0.06 does not mean 
that there is no difference between groups. It just means that this experiment failed 
to detect an effect at this level of probability. Had sample size been larger an effect 
might have been detected at the 5% level.

Many dependent variables (multivariate data)
Some experiments involve more than one dependent variable. For example, an 
experiment involving measurement of haematology and blood biochemistry may 
have 20 or more dependent variables such as counts of red blood cells, haematocrit, 
lymphocytes, etc. Modern studies using gene arrays to assess changes in mRNA may 
involve several thousand dependent variables measured on each experimental unit. 
Such studies often require special multivariate statistical analysis such as ‘principal 
components analysis’, ‘discriminant function analysis’, and various clustering meth-
ods which take account of any relationships between the variables, and can reduce 
large quantities of raw data down to a level where the results can be interpreted. 
These are specialised methods which require statistical advice.

Toxicological data are usually presented as large tables of means and SDs for 
many separate outcomes (e.g. haematology, organ weights, clinical biochemistry). 
This is quite difficult to interpret. A novel approach has been suggested, by convert-
ing responses to standardised effect sizes. As all characters are then expressed in the 
same units (SDs), they can then be averaged (Festing, 1974). This approach leads to a 
number of informative graphical representations of the results as well as a statistical 
test of the overall response.

Tables and figures
Tables and figures should be designed to convey information as clearly as pos-
sible. In most cases three significant digits (i.e. the left-hand digits in a number) 
will suffice when presenting means and SDs. It is easier to compare a set of means 
when they are in the same column, rather than in the same row. When means are 
shown in columns, SDs should be in the next column, not in the same column but 
on a different row. Bar diagrams should only be used if they illustrate something 
of particular interest. They often take up a lot of room compared with a table of 
means and SDs.
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Appendix 1
R-Commander: a free 
menu-driven statistical 
software package

R-Commander (Rcmdr) is a powerful free menu-driven ‘front end’ to the ‘R’ sta-
tistical programming software. It has been used in all the examples of this book. 
However, it is often necessary to prepare the data for entry into Rcmdr, and this can 
be done using EXCEL.

R is widely used by professional statisticians. It is well established and can be 
used to produce complex graphics and advanced statistical analyses. It can be down-
loaded and installed free of charge. However, it is command-driven and its flexibility 
and power mean that a substantial effort is required to master it. R has many associ-
ated packages which can carry out specialised statistical analyses, such as survival 
analysis or various multivariate analyses.

Rcmdr was designed for teaching statistics (probably to students of statistics!). It 
will do most of the statistical analyses needed by those using animals for biomedical 
research. It is free and easy to use, once a few concepts have been understood. It has 
simple graphics output which are good enough for exploring data and presenting the 
outcomes, and these can be saved in various formats. Full publication quality graph-
ics can be done using R. Most textbooks on R have a section on graphical methods.

Installing R and Rcmdr

R can be downloaded from http://www.r-project.org/. It can be installed on a wide 
range of computers and operating systems and can even be installed on, and run 
from, a memory stick. Full details of how to download and install R are provided on 
their website.

Note that if Rcmdr is to be used a ‘custom’ installation of R is necessary. The SDI 
not the default MDI version of R should be chosen. If the wrong version is installed 
Rcmdr will not sit permanently on the screen.

Once R is installed with its icon, it should be started. The ‘Packages’ menu should 
be clicked and then the ‘Install package’ item should be clicked. Choose a local 
mirror site from the list of sites which appears. This will bring up a long (>1000) 
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Appendix 1  127

list of packages that can be installed. Choose Rcmdr and follow the instructions for 
installing it. There are many files which will be installed automatically.

Once Rcmdr has been fully downloaded it can be invoked by typing ‘library(Rcmdr)’ 
in the R window followed by the return key.

The Rcmdr interface

This has menus across the top (File, Edit, Data, etc. and Help). The Help menu gives 
extensive information on the use of Rcmdr as well as access to the Rcmdr website. 
There are now a number of add-on packages for Rcmdr, such as one for survival 
analysis.

Below the menu there are some buttons showing the name of the active data set, 
Edit data set, View data set and Models. The editing facilities are minimal. Single 
numbers can be changed, but any major editing of the data is best done in EXCEL 
and imported back into Rcmdr. The easiest way of importing data into Rcmdr is via 
the clipboard.

There are two output windows. The upper one shows the code that is generated 
by the menu commands. It is possible to write commands for R in this window. These 
can then be highlighted and executed, using the Submit button. In this book the com-
mands for the power analysis method of determining sample size (see Chapter 11) 
are run this way.

The lower window shows the numerical output. This can be marked and copied 
in the usual way, and pasted into Word or EXCEL. A non-proportional font such as 
Courier New should be used for the data to ensure proper alignment.

Graphical output comes in a separate window. A new graph will overwrite an 
existing one. The graphs may be copied in various formats.

Using Rcmdr

Rcmdr has limited facilities for manipulating data so it is advisable to do this first, 
using EXCEL. The data should be in the standard format with columns for ID or 
‘Animal.number’ (note that each column is headed by a single word; if two words 
are necessary they should be joined with a point ‘.’), treatment (two or more columns 
if it is a factorial experiment and/or blocked design), and observation(s). The tables 
in this book can be used as examples, although some have been split to fit in with the 
text. The missing observation code is ‘NA’.

Output in R and Rcmdr is in alphabetic order, so factors may need to be coded. 
For example, in the experiment on the effect of wheel running on learning ability in 
mice the treatments were None, Moderate and Marathon. So output will be in the 
order Marathon, Moderate and None. If this is not acceptable the factors may be 
coded A, B and C or A.None, B.Moderate and C.Marathon. If numerical factors are 
entered as numbers Rcmdr must be told that they are factors not variables (Data, 
manage variables in active data set, convert numeric variables to factors).
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Further reading

Books on laboratory animal science

Hau, J. and Shapiro, S.J. Handbook of Laboratory Animal Science. Vol 1. Essential Principles 
and Practices. Boca Raton FL: CRC Press, 2011

A comprehensive volume covering most topics associated with laboratory animals and their use.

Howard, B. Nevalainen, T. and Perretta, G. The COST Manual of Laboratory Animal Care and 
Use. Boca Raton FL: CRC Press, 2011

This book covers a wide range of topics relevant to the use of animals in research. These range 
from the design of animal facilities, ethical evaluation of scientific procedures, reduction, animal 
models, handling, to basic procedures and many more techniques and topics.

Hubrecht, R. and J.Kirkwood. The UFAW Handbook on the Care and Management of Laboratory 
and Other Research Animals, Chichester: Wiley-Blackwell, 2010

A large single volume definitive textbook on all aspects of the care and management of labo-
ratory and some other animals. There are sections on ‘Implementing the 3Rs’, ‘Species kept in 
laboratories’, ‘Reptiles’ and ‘Amphibians and fish’.

van Zutphen, L. F. M.; Baumans, V.; Beynen, A. C., editors. Principles of Laboratory Animal 
Science. Amsterdam, New York, London: Elsevier; 1993

A reference book which covers the principles of laboratory animal science with chapters on 
legislation, the biology of laboratory animals, standardisation, nutrition, genetics, diseases and 
microbiology and the design of animal experiments. It does not have chapters on individual 
species.

Wolfensohn, S. and Lloyd. M. Handbook of Laboratory Animal Management and Welfare. 4th 
Edition. Oxford: Wiley-Blackwell, 2013

This is a general introduction to laboratory animal science often used by animal technicians, but 
useful to anyone starting work with laboratory animals.

Books on experimental design

Bate, S. T. and Clark, R. The Design and Statistical Analysis of Animal Experiments. Cambridge: 
Cambridge University Press, 2014

A good book covering in a non-mathematical way the design and analysis of in vivo experiments. 
It also describes how to use InvivoStat, a software package, assembled by the authors.
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Clarke, G.M. and Kempson, R.E. Introduction to the Design and Analysis of Experiments. 
London: Arnold. 1997

A modern book aimed at undergraduates in statistics and mathematics rather than research 
scientists.

Cochran, W.G and Cox, G.M. Experimental Designs. New York: John Wiley & Sons, 1957
A classical book on experimental design. Though an older edition (before computers were 
readily available), it still covers the main principles. It can be recommended to anyone using 
more advanced designs.

Cox, D, R. Planning Experiments. New York: John Wiley & Sons, 1958
Although published many years ago, this book is still in print and is not in any way dated. It is a 
readable book aimed directly at the research worker, with few mathematical formulae. However, 
it also manages to deal with some advanced concepts and experimental designs. Strongly 
recommended.

Cox, D.R. and Reid, N. The Theory of the Design of Experiments. Boca Raton FL: Chapman and 
Hall/CRC Press, 2000

An advanced book covering the principles of experimental design, with quite a bit of 
mathematical notation. However, the text is clear and easy to understand even for the 
non-mathematician.

The Experimental Design Assistant (EDA) https://eda.nc3rs.org.uk/
A good free online resource from the NC3Rs to support researchers in the planning of ani-
mal experiments - Its main thrust is to help build (and critique) a visual representation of the 
design of experiments but it also contains explanations of good experimental design and 
statistical principles. 

Fisher RA. The Design of Experiments. 7th edn. New York: Haffner Publishing, 1960
A classical non-mathematical book which is still capable of providing many insights into the 
design of experiments and statistical inference.

Mead, R. The Design of Experiments. Cambridge: Cambridge University Press, 1988
An advanced textbook on experimental design aimed largely at postgraduate students special-
ising in statistics.

Mead, R., Gilmour, S.G. and Mead, A. Statistical Principles for the Design of Experiments. 
Cambridge: Cambridge University Press, 2012

A major textbook on experimental design. Only for professional statisticians.

Ruxton, G.D. and Colegrave N. Experimental Design for the Life Sciences. 2nd edn. Oxford: 
Oxford University Press, 2006

A small but excellent non-mathematical text covering many aspects of experimental design in 
the life sciences.

Books on statistics

Altman, D.G. Practical Statistics for Medical Research. London: Chapman and Hall, 1991
A textbook aimed at medical researchers with a bias towards work involving humans, but 
sufficiently general to cover all the biological sciences, including quite advanced statistical 
concepts. Readable and not too mathematical.
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Crawley, M.J. Statistics. An Introduction using R. Chichester: John Wiley & Sons, 2005
Covers statistics from an elementary level right up to the use of advanced techniques using R. 
Anyone working through this book should end up with a good understanding of the subject and 
of how to program in R.

Cumming J. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-
Analysis. New York: Routledge, 2012

Some scientists claim that too much emphasis has been placed on statistical significance at 
the expense of estimating effect sizes and confidence intervals. This interesting book argues 
this case as well as making a case for the more widespread use of meta-analysis.

Dalgaard, P. Introductory Statistics with R. New York: Springer-Verlag, 2010
An excellent book for learning statistics using the R statistical programming language.

Howell, D.C. Fundamental Statistics for the Behavioral Sciences. Pacific Grove CA: Duxbury 
Press, 1999

A textbook which recognises that virtually all statistical analyses will be done by computer, 
so emphasises the importance of understanding the data, choosing appropriate statistical 
methods, and interpreting the output from statistical packages. However, the book does not 
specifically cover experimental designs.

Maxwell, S.E. and Delaney, H.D. Designing Experiments and Analyzing Data. Belmont CA: 
Wadsworth Publishing, 1989

A classical reference book/textbook covering both experimental design and statistics, but with 
a bias towards the behavioural sciences. Although it has some advanced topics, according to 
the authors ‘…the necessary background for the book is minimal’.

Mead, R. and Curnow, R.N. Statistical Methods in Agriculture and Experimental Biology. 
London: Chapman and Hall, 1983

The aim of this book ‘…is to describe and explain those statistical ideas which we believe are 
an essential part of the intellectual equipment of a scientist working in agriculture or on the 
experimental side of biology’. There is a strong emphasis on experimental design, quite a few 
formulae, and lots of worked examples.
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[Page numbers in italics refer to tables.]

3Rs (replacement, refinement, reduction) 9, 10–11 

ad hoc experiments 11 
alternative hypotheses 104 
amyotrophic lateral sclerosis (ALS) 6 f
analysis of variance (see ANOVA) 
Animals (Scientific Procedures) Act (UK 1986) 9 
ANOVA (analysis of variance) method 7, 34–43 

validity 50–1 
ARRIVE guidelines 117, 120, 121–3 
atherosclerosis 29 
 
barrier animal houses 17 
Bartlett’s test 51 
bedding 23 
binary attributes 94 
biological rhythms 28 
blinding 2–5, 30–33
Bonferroni’s method 38 
box plots 47–8 

cage labels 117 
cages 23, 92, 114–15 
caging densities 23 
CD–1 mouse stock 19 
classification variables 27 
clinical trials 8–9 
Cohen’s d 104 
completely randomised designs 

see Experimental designs 
confidence intervals 124 
congenic strains 21 
consomic strains 21 
control groups 5, 30 
‘conventional’ animals 16 
correlation 96, 99–100 
covariance analysis 90–2 
crossover experiments 8, 39, 40, 75–6 
 
data screening 

factorial experiments 54–5 
single factor experiments 47–8 

degrees of freedom 34–5 
dependent variables 113–14 
design (see experimental design) 
deviation statistic 35 
diet 23 
Directive 2010/63/EU 9, 23 
DNA markers 18 
double–blinding 8, 33 
drug screening 6 
Duncan’s multiple range test 38 
Dunnett’s test 38, 49 

effect sizes 103 
environmental enrichment 23 
ethics committees 118–19 
EU modules 2–3
European Union (EU) 9 
EXCEL software 31, 32 
experimental designs 4–6, 114–15 

Completely randomised 31–2, 39, 41
Factorial 7, 32, 40, 41, 53–68,76–80, 
Randomised block 7–8, 32, 39, 41, 69–83 
Split-plot 84
Latin square 39, 87–9
Within-subject
Repeated measures 40, 42, 89–90
Sequential

experimental units 4–5, 112–13 
exploratory experiments 9 
external validity 38–9 
 
F–values 35, 45 
F1 hybrid strains 13, 21 
false-positive/negative results 12 
fetuses 17 
fidelity (models) 16 
figures 125 
Fisher, R.A. 6, 7, 34 
Fisher’s exact test 94–5 
Fisher’s least significant 

difference (LSD) test 38 
fixed effects 25, 26–7, 28 
flow charts 118 
 
generalised linear models 37 
genetic drift 18 
genetic markers 21 
genetic variation 22 
genome wide association (GWA) studies 19, 22 
gnotobiotic animals 17 
Gosset, W.S. 7 
Guidelines for the care and use of 

laboratory animals (ILAR, USA) 10 

high–fidelity fallacy 16 
historical controls 30 
Home Office (UK) 10 
human outcomes 5–6 

inbred strains 20–1 
choice of strain 22 

independent variables 113 
Institute of Laboratory Animal 

Research (ILAR) (USA) 10 
internal validity 38–9 
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jogging–memory correlations 44 

Kendall correlation coefficient 100, 101 
 
Latin square. See experiment designs learning ability 51–2 

Learning outcomes 3, 2–3
least significant difference 124 
least square procedure 96 
legal requirements 9–11, 117 
Levene’s test 51 
linear model analysis 56, 73, 74 
linear regression 96–9 
LS mouse stock 18 
 
matched pairs experiments 71 
mean square deviation statistic 35 
means (statistic) 57 
measurement errors 28 
mice 

environmental enrichment 45 
inbred strains 20, 21, 22 
outbred stocks 17, 18–19, 22 

microarray analysis 38 
MINITAB software 46 
models 15–16 
multivariate data 125 

National Institutes of Health (NIH) (USA) 39 
Neuman–Keuls’ test 38 
 
one–way ANOVA method 34–5 
orthogonal comparisons 37–8 
outbred stocks 13, 17–20 

choice of stock 22 
 
P–values 35, 125 
pathogens 16–17 
physical randomisation 31 
pilot experiments 9, 29, 114 
post hoc comparisons 38, 48–50 
post hoc hypotheses 9 
power analysis 102, 103–9, 115 
power of experiments 104 
preclinical studies 5 
Principles of humane experimental technique (Russell 

and Burch) 9, 16 
proportions 124–5
pseudo–replication 12 
 
Q–Q plots 51, 58 
quantitative outcomes 94 
quantitative trail loci (QTLs) 21 
 
random variability effects 25, 27–8, 92–3 
randomisation 11–12, 30–3, 116– 
randomised block (RB) see designs 
randomised controlled experiments 6–7 

experimental subjects 22 
rats 

F1 hybrid strains 21 
inbred strains 20, 21, 22 
outbred stocks 17, 19–20, 22 

Rcmdr software 46, 126–7 
recombinant inbred strains 21 
reduction 9–11, 33, 53, 65, 103, 107,111 
refinement 9, 10, 117 

regression (see linear regression) 
repeated measures, see experiment designs 
replacement 9, 10, 123 
reports 120–5 
reproducibility 23 

randomised block experiments 81–3 
residual deviation statistic 35, 36 
residual diagnostic plots 

factorial experiments 57–8 
single factor experiments ???

residuals–fitted–values plots 51 
resource availability 117 
resource equation method 102, 109–11, 115–16 
Rothamsted experimental station 6 
running experiment (example) 45–6 
 
sample sizes 5, 102–11, 115–16 scale transformations 37 

arcsine 37 
logarithmic transformations 37 
square root 37

Scheffe’s test 38 
screening (see data screening) 
sequential experiment designs 40, 42 
signal–to–noise ratio 25–6 
significance levels 12, 104 
single factor experiment designs 39, 44–52 
small experiments 12 
social animals 23 
software 31 
Spearman correlation coefficient 100, 101 
species choice 15 
specific pathogen–free (SPF) animals 16–17 
split plot experiment designs 40, 41, 84–7 
Sprague–Dawley rat stock 13, 18, 19–20 
spreadsheets 31 
SPSS software 47 
standard deviation 35, 57, 103–4, 120 
standard error 124 
standard operating procedures (SOPs) 117 
standardisation 24 
standardisation fallacy 24 
standardised effect size (SES) 50, 104–6 
statistical analysis 13–14, 117 
statistical analysis software 46–7 
statistical independence 36 
statistical significance 7 
statistical tests 25 
stripcharts 47 
strokes 30 
surveys 43 

t–test 7 
paired 71

tables 125 
Transformation see scale transformation
Tukey’s test 38, 48 
two–way ANOVA method 34, 36 
 

variability 25–33 
minimisation 113 

variance statistic 35 
 
whisker plots 47–8 
Wistar rat stock 18 
within-animal experiments 39, 85–6
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